Citation: | Dong Su. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy&Environment, 2017, 2(2): 70-83. doi: 10.1016/j.gee.2017.02.001 |
[1] |
P.D.Nellist, M.F.Chisholm, N.Dellby, et al. Science, 305 (2004),p. 1741
|
[2] |
D.A.Muller, L.F.Kourkoutis, M.Murfitt, et al. Science, 319 (2008),pp. 1073-1076
|
[3] |
O.L.Krivanek, T.C.Lovejoy, N.Dellby, et al. Nature, 514 (2014),pp. 209-214
|
[4] |
O.L.Krivanek, M.F.Chisholm, V.Nicolosi, et al. Nature, 464 (2010),pp. 571-574
|
[5] |
C.L.Jia, S.B.Mi, J.Barthel, et al. Nat. Mater., 13 (2014),pp. 1044-1049
|
[6] |
C.Chen, Y.J.Kang, Z.Y.Huo, et al. Science, 343 (2014),pp. 1339-1343
|
[7] |
X.Q.Huang, Z.P.Zhao, L.Cao, et al. Science, 348 (2015),pp. 1230-1234
|
[8] |
L.Zhang, L.T.Roling, X.Wang, et al. Science, 349 (2015),pp. 412-416
|
[9] |
J.Y.Huang, L.Zhong, C.M.Wang, et al. Science, 330 (2010),pp. 1515-1520
|
[10] |
M.Cargnello, V.T.Doan-Nguyen, T.R.Gordon, et al. Science, 341 (2013),pp. 771-773
|
[11] |
L.Bu, N.Zhang, S.Guo, et al. Science, 354 (2016),pp. 1410-1414
|
[12] |
M.Sathiya, A.M.Abakumov, D.Foix, et al. Nat. Mater., 14 (2015),pp. 230-238
|
[13] |
J.Lee, A.Urban, X.Li, et al. Science, 343 (2014),pp. 519-522
|
[14] |
Y.Zhu, S.Murali, M.D.Stoller, et al. Science, 332 (2011),pp. 1537-1541
|
[15] |
G.Chen, Y.Zhao, G.Fu, et al. Science, 344 (2014),pp. 495-499
|
[16] |
D.B.Williams, C.B.Carter
|
[17] | |
[18] | |
[19] |
R.F.Egerton
|
[20] |
J.Goldstein
|
[21] |
J.C.H.Spence, J.M.Zuo
|
[22] |
V.J.Keast, A.J.Scott, R.Brydson, et al. J. Microsc., 203 (2001),pp. 135-175
|
[23] | |
[24] |
A.T.Bell Science, 299 (2003),pp. 1688-1691
|
[25] |
R.Jin Nanotechnol. Rev., 1 (2012),pp. 31-56
|
[26] |
C.Liu, S.Lee, D.Su, et al. Langmuir, 28 (2012),pp. 17159-17167
|
[27] |
M.D.Abramoff, P.J.Magalhaes, S.J.Ram Biophot. Int., 11 (2004),pp. 36-42
|
[28] |
M.Shekhar, J.Wang, W.Lee, et al. J. Catal., 293 (2012),pp. 94-102
|
[29] |
J.Zhang, S.A.Winget, Y.Wu, et al. ACS Nano, 10 (2016),pp. 2607-2616
|
[30] |
H.Inada, L.Wu, J.Wall, et al. J. electron Microsc., 58 (2009),pp. 111-122
|
[31] |
Y.Ding, F.Fan, Z.Tian, et al. J. Am. Chem. Soc., 132 (2010),pp. 12480-12486
|
[32] |
L.Zhao, X.Yu, J.Yu, et al. Adv. Funct. Mater., 24 (2014),pp. 5557-5566
|
[33] |
W.Du, Q.Wang, C.A.LaScala, et al. J. Mater. Chem., 21 (2011),pp. 8887-8892
|
[34] |
S.W.Kim, N.Pereira, N.A.Chernova, et al. ACS Nano, 9 (2015),pp. 10076-10084
|
[35] |
K.He, F.Lin, Y.Zhu, et al. Nano Lett., 15 (2015),pp. 5755-5763
|
[36] |
Y.Xia, Y.Xiong, B.Lim, et al. Angew. Chem. Int. Ed., 48 (2009),pp. 60-103
|
[37] |
S.E.Habas, H.Lee, V.Radmilovic, et al. Nat. Mater., 6 (2007),pp. 692-697
|
[38] |
Y.Zhai, J.S.DuChene, Y.C.Wang, et al. Nat. Mater., 15 (2016),pp. 889-895
|
[39] |
M.R.Langille, J.Zhang, M.L.Personick, et al. Science, 337 (2012),pp. 954-957
|
[40] |
R.Wang, O.Dmitrieva, M.Farle, et al. J. Phys. Chem. C, 113 (2009),pp. 4395-4400
|
[41] |
S.Van Aert, K.J.Batenburg, M.D.Rossell, et al. Nature, 470 (2011),pp. 374-377
|
[42] |
P.A.Midgley, M.Weyland, J.M.Thomas, et al. Chem. Commun., 10 (2001),pp. 907-908
|
[43] |
J.R.Jinschek, K.J.Batenburg, H.A.Calderon, et al. Ultramicroscopy, 108 (2008),pp. 589-604
|
[44] |
I.Arslan, T.J.V.Yates, N.D.Browning, et al. Science, 309 (2005),pp. 2195-2198
|
[45] |
I.Arslan, E.A.Stach Nat. Mater., 11 (2012),pp. 911-912
|
[46] |
J.Miao, P.Ercius, S.J.L.Billinge Science, 353 (2016),p. 1380
|
[47] |
M.C.Scott, C.C.Chen, M.Mecklenburg, et al. Nature, 483 (2012),pp. 444-448
|
[48] |
C.-C.Chen, C.Zhu, E.R.White, et al. Nature, 496 (2013),pp. 74-77
|
[49] |
M.Azubel, J.Koivisto, S.Malola, et al. Science, 345 (2014),pp. 909-912
|
[50] |
J.Park, H.Elmlund, P.Ercius, et al. Science, 349 (2015),pp. 290-295
|
[51] |
R.Xu, C.-C.Chen, L.Wu, et al. Nat. Mater., 14 (2015),pp. 1099-1103
|
[52] |
B.Goris, S.Bals, W.Van den Broek, et al. Nat. Mater., 11 (2012),pp. 930-935
|
[53] |
L.Bu, S.Guo, X.Zhang, et al. Nat. Comm., 7 (2016),p. 11850
|
[54] |
S.Guo, S.Zhang, D.Su, et al. J. Am. Chem. Soc., 135 (2013),pp. 13879-13884
|
[55] |
K.Suenaga, M.Koshino Nature, 468 (2010),pp. 1088-1090
|
[56] |
R.F.Egerton, P.Li, M.Malac Micron, 35 (2004),pp. 399-409
|
[57] |
R.F.Egerton, R.McLeod, F.Wang, et al. Ultramicroscopy, 110 (2010),pp. 991-997
|
[58] |
N.Jiang Rep. Prog. Phys., 79 (2015),p. 016501
|
[59] |
D.Su, F.Wang, C.Ma, et al. Nano Energy, 2 (2013),pp. 343-350
|
[60] |
N.Jiang, S.Zhou, D.Su, et al. Phys. Status. Solidi. RRL, 6 (2012),pp. 487-489
|
[61] |
Y.C.Hsieh, Y.Zhang, D.Su, et al. Nat. Commun., 4 (2013),p. 2466
|
[62] |
Q.Li, L.Wu, G.Wu, et al. Nano Lett., 15 (2015),pp. 2468-2473
|
[63] |
D.Wang, H.L.Xin, R.Hovden, et al. Nat. Mater., 12 (2012),pp. 81-87
|
[64] |
I.C.Noyan, J.B.Cohen
|
[65] |
J.N.Clark, L.Beitra, G.Xiong, et al. Science, 341 (2015),pp. 56-59
|
[66] |
X.Shen, K.Ahmadi-Majlan, J.H.Ngai, et al. Appl. Phys. Lett., 106 (2015),p. 032903
|
[67] |
M.J.Hytch, E.Snoeck, R.Kilaas Ultramicroscopy, 74 (1998),pp. 131-146
|
[68] |
C.L.Johnson, E.Snoeck, M.Ezcurdia, et al. Nat. Mater., 7 (2008),pp. 120-124
|
[69] |
M.-W.Chu, I.Szafraniak, R.Scholz1, et al. Nat. Mater., 3 (2004),pp. 87-90
|
[70] |
M.J.Hÿtch, J.-L.Putaux, J.-M.Pénisson Nature, 423 (2003),pp. 270-273
|
[71] |
H.Zheng, Y.S.Meng, Y.Zhu MRS Bull., 40 (2015),pp. 12-18
|
[72] |
J.Zweck
|
[73] |
A.Brazier, L.Dupont, L.Dantras-Laffont, et al. Chem. Mater., 20 (2008),pp. 2352-2359
|
[74] |
K.Yamamoto, Y.Iriyama, T.Asaka, et al. Angew. Chem., 122 (2010),pp. 4516-4519
|
[75] |
K.He, Y.Zhou, P.Gao, et al. ACS Nano, 8 (2014),pp. 7251-7259
|
[76] |
C.T.Nelson, P.Gao, J.R.Jokisaari, et al. Science, 334 (2011),pp. 968-971
|
[77] |
M.T.McDowell, S.W.Lee, C.Wang, et al. Adv. Mater., 24 (2012),pp. 6034-6041
|
[78] |
M.Jin, A.M.Minor, E.A.Stach, et al. Acta Mater., 52 (2004),pp. 5381-5387
|
[79] |
L.Zhong, J.Wang, H.Sheng, et al. Nature, 512 (2015),pp. 177-180
|
[80] |
J.Y.Huang, Y.-C.Lo, J.Niu, et al. Nat. Nanotech, 8 (2013),pp. 277-281
|
[81] |
R.Sharma Microsc. Microanal., 7 (2001),pp. 494-506
|
[82] |
P.L.Gai Top. Catal., 21 (2002),pp. 161-173
|
[83] |
P.L.Hansen, J.B.Wagner, S.Helveg, et al. Science, 295 (2002),pp. 2053-2055
|
[84] |
T.W.Hansen, J.B.Wagner, R.E.Dunin-Borkowski Mater. Sci. Technol., 26 (2010),pp. 1338-1344
|
[85] |
J.B.Wagner, F.Cavalca, C.D.Damsgaard, et al. Micron, 43 (2012),pp. 1169-1175
|
[86] |
P.L.Gai, E.D.Boyes Charact. Mater. (2012),pp. 1-11
|
[87] |
S.Chenna, R.Banerjee, P.A.Crozier Chem. Cat. Chem., 3 (2011),pp. 1051-1059
|
[88] |
J.F.Creemer, S.Helveg, G.H.Hoveling, et al. Ultramicroscopy, 108 (2008),pp. 993-998
|
[89] |
H.Yoshida, Y.Kuwauchi, J.R.Jinschek, et al. Science, 335 (2012),pp. 317-319
|
[90] |
Y.Li, D.Zakharov, S.Zhao, et al. Nat. Commun., 6 (2015),p. 7583
|
[91] |
M.J.Williamson, R.M.Tromp, P.M.Vereecken, et al. Nat. Mater, 2 (2003),pp. 532-536
|
[92] |
N.de Jonge, F.M.Ross Nat. Nanotech, 5 (2011),pp. 695-704
|
[93] |
H.Zheng, R.K.Smith, Y.-W.Jun, et al. Science, 324 (2009),pp. 1309-1312
|
[94] |
D.Li, M.H.Nielsen, J.R.I.Lee, et al. Science, 336 (2012),pp. 1014-1018
|
[95] |
H.L.Xin, H.Zheng Nano Lett., 12 (2012),pp. 1470-1474
|
[96] |
H.-G.Liao, L.Cui, S.Whitelam, et al. Science, 336 (2012),pp. 1011-1014
|
[97] |
H.-G.Liao, D.Zherebetskyy, H.Xin, et al. Science, 345 (2014),pp. 916-919
|
[98] |
Z.Zeng, X.Zhang, K.Bustillo, et al. Nano Lett., 15 (2015),pp. 5214-5220
|
[99] |
J.M.Yuk, J.Park, P.Ercius, et al. Science, 336 (2012),pp. 61-64
|
[100] |
Z.Zeng, W.I.Liang, H.G.Liao, et al. Nano Lett., 14 (2014),pp. 1745-1750
|
[101] |
B.L.Mehdi, M.Gu, L.R.Parent, et al. Microsc. Microanal., 20 (2014),pp. 484-492
|
[102] |
M.E.Holtz, Y.Yu, D.Gunceler, et al. Nano Lett., 14 (2014),pp. 1453-1459
|
[103] |
D.Su
|
[104] | |
[105] |
S.V.Kalinin, A.Borisevich, S.Jesse Nature, 539 (2016),pp. 485-487
|
[1] | Amalia M. Grigoras, Federica Valentini, Loredana Latterini, Luigi Vaccaro. Heterogeneous iron-based catalysts for a sustainable photoinduced nitrogen fixation. Green Energy&Environment. doi: 10.1016/j.gee.2024.07.003 |
[2] | Ming Yin, Jifeng Pang, Jin Guo, Xianquan Li, Yujia Zhao, Pengfei Wu, Mingyuan Zheng. Tailoring Ni based catalysts by indium for the dehydrogenative coupling of ethanol into ethyl acetate. Green Energy&Environment, 2024, 9(8): 1321-1331. doi: 10.1016/j.gee.2023.10.001 |
[3] | Xiao Yu, Shilin Fan, Bin Zhu, Soliman I. El-Hout, Jian Zhang, Chunlin Chen. Recent progress on photothermal nanomaterials: Design, mechanism, and applications. Green Energy&Environment. doi: 10.1016/j.gee.2024.09.002 |
[4] | Jin Zhang, Ding Chen, Jixiang Jiao, Weihao Zeng, Shichun Mu. Valorization of spent lithium-ion battery cathode materials for energy conversion reactions. Green Energy&Environment. doi: 10.1016/j.gee.2024.10.006 |
[5] | M. González-Castaño, C. Morales, J. C. Navarro de Miguel, J. H. Boelte, O. Klepel, J. I. Flege, H. Arellano-García. Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts. Green Energy&Environment, 2023, 8(3): 744-756. doi: 10.1016/j.gee.2021.05.007 |
[6] | Jiayu Zheng, Wenkang Zhao, Liyun Song, Hao Wang, Hui Yan, Ge Chen, Changbao Han, Jiujun Zhang. Advances of manganese-oxides-based catalysts for indoor formaldehyde removal. Green Energy&Environment, 2023, 8(3): 626-653. doi: 10.1016/j.gee.2022.01.008 |
[7] | Liyu Zhu, Yucheng Li, Jingyang Zhao, Jing Liu, Luying Wang, Jiandu Lei. Recent advanced development of stabilizing sodium metal anodes. Green Energy&Environment, 2023, 8(5): 1279-1307. doi: 10.1016/j.gee.2022.06.010 |
[8] | Pingping Yang, Xin Yang, Wenzhu Liu, Ruike Guo, Zufu Yao. Graphene-based electrocatalysts for advanced energy conversion. Green Energy&Environment, 2023, 8(5): 1265-1278. doi: 10.1016/j.gee.2022.06.008 |
[9] | Yaqi Cao, Wenchao Peng, Yang Li, Fengbao Zhang, Yuanzhi Zhu, Xiaobin Fan. Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy&Environment, 2023, 8(2): 360-382. doi: 10.1016/j.gee.2021.11.005 |
[10] | Jing Zhang, Chithra Asokan, Gregory Zakem, Phillip Christopher, J. Will Medlin. Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers. Green Energy&Environment, 2022, 7(6): 1263-1269. doi: 10.1016/j.gee.2021.01.022 |
[11] | Jun-Wei Zhang, Xian-Wei Lv, Tie-Zhen Ren, Zheng Wang, Teresa J. Bandosz, Zhong-Yong Yuan. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy&Environment, 2022, 7(5): 1024-1032. doi: 10.1016/j.gee.2020.12.009 |
[12] | Qing Xu, Xun Hu, Lijun Zhang, Kai Sun, Yuewen Shao, Zhiran Gao, Qing Liu, Chun-Zhu Li. Cross-polymerization between the model furans and phenolics in bio-oil with acid or alkaline catalysts. Green Energy&Environment, 2021, 6(1): 138-149. doi: 10.1016/j.gee.2020.03.009 |
[13] | Shen Zhang, Xing Zhang, Yuan Rui, Ruihu Wang, Xiaoju Li. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy&Environment, 2021, 6(4): 458-478. doi: 10.1016/j.gee.2020.10.013 |
[14] | Yafei Li. Single-atom catalysts: The role of intrinsic intermediate. Green Energy&Environment, 2020, 5(1): 4-5. doi: 10.1016/j.gee.2019.12.002 |
[15] | Ye Song, Wei Lin, Xingcui Guo, Linlin Dong, Xindong Mu, Huiping Tian, Lei Wang. Aromatization and isomerization of methylcyclohexane over Ni catalysts supported on different supports. Green Energy&Environment, 2019, 4(1): 75-82. doi: 10.1016/j.gee.2018.05.003 |
[16] | Sungjae Park, Dahye Kwon, Ji Yeon Kang, Ji Chul Jung. Influence of the preparation method on the catalytic activity of MgAl hydrotalcites as solid base catalysts. Green Energy&Environment, 2019, 4(3): 287-292. doi: 10.1016/j.gee.2018.11.003 |
[17] | Yuting Zhu, Zhijing Li, Jinzhu Chen. Applications of lignin-derived catalysts for green synthesis. Green Energy&Environment, 2019, 4(3): 210-244. doi: 10.1016/j.gee.2019.01.003 |
[18] | Xiaojing Fan, Wenwei Sun, Fancheng Meng, Aiming Xing, Jiehua Liu. Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy&Environment, 2018, 3(1): 2-19. doi: 10.1016/j.gee.2017.08.002 |
[19] | Yangcheng Jiang, Zhen Liu, Jili Song, Ikwhang Chang, Jianhuang Zeng. Preparation and characterization of bimetallic Pt^Ni-P/CNT catalysts via galvanic displacement reaction on electrolessly-plated Ni-P/CNT. Green Energy&Environment, 2018, 3(4): 360-367. doi: 10.1016/j.gee.2018.07.005 |
[20] | Shao Su, Shimou Chen, Chunhai Fan. Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy&Environment, 2018, 3(2): 97-106. doi: 10.1016/j.gee.2017.08.005 |