Current Issue

2025, Volume 10,  Issue 4

Display Method:
Review Articles
Abstract:
In the context of diminishing energy resources and worsening greenhouse effect, thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics. Among inorganic thermoelectric materials, copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth, lower usage costs, non-toxicity, and good biocompatibility. Compared to organic thermoelectric materials, the "phonon liquid-electron crystal" (PLEC) feature of copper sulfide compounds makes them have stronger thermoelectric performance. This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds. It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices, and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials. Finally, it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds, including adjusting the chemical proportion of Cu2-xS and introducing element doping to regulate the crystal structure, phase composition, chemical composition, band structure, and nanoscale microstructure of copper sulfide compounds, and directly affecting ZT value by adjusting conductivity and thermal conductivity. In addition, it discusses composite engineering based on copper sulfide compounds, including inorganic, organic, and metal compounds, and discusses tri-component compounds derived from sulfide copper. Finally, it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials, hoping that this review will promote the development of copper sulfide-based thermoelectric materials.
Abstract:
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention due to their high energy density, low cost, high efficiency, and environmental friendliness. Nevertheless, the development of AZIBs has been significantly hindered by the unavoidable issues with zinc dendrites and the side reactions of the anode. The strategies for stable and controllable interfacial regulation have recently made rapid progress, due to their dual function of improving zinc ion transport dynamics and preventing direct contact of zinc with electrolytes. Therefore, it's imperative to conduct a comprehensive summary of the interfacial regulation of zinc anodes and to engage in in-depth research into the underlying mechanisms. Subsequently, the interfacial regulation was classified based on battery structure, including anode coating strategy, electrolyte engineering, and separator optimization. Eventually, the current limitations of interfacial regulation and a deep outlook on AZIBs interface engineering are summarized.
Abstract:
Zeolite-loaded noble metal catalysts have demonstrated excellent performance in addressing cold-start automotive exhaust NOx emissions and catalytic oxidation of VOCs applications. Pd and Pt are the most commonly used active metals in PNA and VOC catalysts, respectively. However, despite the same metal/zeolite composition, the efficient active sites for PNA and VOC catalysts have been viewed as mainly Pd2+ and Pt0, respectively, both of which are different from each other. As a result, various methods need to be applied to dope Pd and Pt in zeolitic support respectively for different usages. No matter which type of metal species is needed, the common requirement for both PNA and VOC catalysts is that the metal species should be highly dispersed in zeolite support and stay stable. The purpose of this paper is to review the progress of synthetic means of zeolite-coated noble metals (Pd, Pt, etc.) as effective PNA or VOC catalysts. To give a better understanding of the relationship between efficient metal species and the introduced methods, the species that contributed to the NOx adsorption (PNA) and VOCs deep catalytic oxidation were first summarized and compared. Then, based on the above discussion, the detailed construction strategies for different active sites in PNA and VOC catalysts, respectively, were elaborated in terms of synthetic routes, precursor selection, and zeolite carrier requirements. It is hoped that this will contribute to a better understanding of noble metal adsorption/catalysis in zeolites and provide promising strategies for the design of adsorption/catalysts with high activity, selectivity and stability.
Abstract:
Ammonia is nowadays one of the most important commodities chemicals intensively produced at about 175 million tons per year, contributing to 1.8% of the global energy demand. The constantly increasing NH3 demand also paralleleds by the high CO2 emissions associated with its production. Therefore, decarbonizing NH3 synthesis is one of the most urgent contemporary challenges. Taking inspiration from Nature, solar-driven nitrogen fixation under mild conditions is one of the most promising yet challenging alternatives to classic methods. In this review, we focused our attention on the photocatalytic methods for the synthesis of ammonia; in particular, we concentrated on stable and recyclable heterogeneous Fe-based photocatalysts for producing NH3. Indeed, recoverable and widely abundant and low-cost iron catalysts may represent a very promising tool for future sustainable access to this largely desired chemical target. After an overview of the pioneering works on Fe-driven nitrogen photofixation, the recent strategies on the use of Fe are herein reported. Compared with pristine photocatalysts, adding Fe as dopant or composite and heterojunction highly enhances the photocatalytic performances, opening the way to sustainable and low-cost nitrogen production.
Research papers
Abstract:
The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products, making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process. To achieve the efficient selective oxidation of HMF to FDCA, a series of NiCo2O4 catalysts with different morphologies, such as flaky, echinoids, pompon and corolla, were prepared and characterized by XRD, SEM, TEM, BET, XPS, and FTIR. Among the four catalysts, flaky NiCo2O4 exhibited the most excellent catalytic activity and stability, with a FDCA yield of 60.1% within 12 h at 80 ℃ without alkali participation. The excellent performance of flaky NiCo2O4 catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed (400) facets. The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb -CHO and -CH2-OH of HMF, respectively, and this synergistic effect promotes the efficient production of FDCA. This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.
Abstract:
Aqueous ion storage systems have motivated great interest by virtue of low reduction, high eco-sustainability and safety. Among various cathode candidates, transition metal compounds are featured with easy dissolution in aqueous solutions and inferior conductivity, which severely hinder their application. Herein, advantages are taken of the “conveyor effect” of conjugated polyaniline to prepare an oxygen defective tungstate-linked polyaniline (Od-WOP) material with chrysanthemum-like microstructure. By virtue of the high electronic conductivity derived from conductive conjugated polyaniline skeleton, unbalanced charge distribution triggered by the defective structure, and reversibly rapid ion (de) intercalation benefited from the open framework with porous chrysanthemum-like microstructure, it delivers outstanding rate capability with a maximum specific capacity of 162.2 mAh g-1 and great cycle stability for storing NH4+. Additionally, it also adopts a high reversible capacity of 140.4 mAh g-1 and outstanding cycling performance to store Ca2+. Consequently, the assembled Od-WOP//PTCDI flexible aqueous ammonium ion batteries and calcium ion batteries exhibit superior capacities, energy densities and flexibilities. Od-WOP achieves the NH4+ and Ca2+ storage capability by interacting with them through hydrogen and ionic bonds, respectively. The deep insight from this work sheds light upon a novel strategy to excavate greater potential of transition metal compounds for aqueous ion batteries.
Abstract:
Nanostructure engineering and composition rationalization are crucial for materials to become candidates for high-performance supercapacitor. Herein, a novel core-shell heterostructured electrode, combining CoS hollow nanorods with NiCoMn-layered double hydroxides (LDH) ternary metal nanosheets, were prepared on carbon cloth by reasonably controlled vulcanization and electrodeposition. By optimizing electrodeposition conditions, the material's structure and properties can be fine-tuned. The enhanced capacitance of the optimized carbon cloth (CC)@CoS/NiCoMn-LDH-300 electrode (4256.0 F g-1) lies in the open space provided by CoS and the establishment of a new charge transfer channel across the interfaces of CC@CoS/NiCoMn-LDH-300 nanosheets. This is further demonstrated by Density functional theory (DFT) simulations based on OH- adsorption energy, which produces faster redox charge kinetics and significantly enhances the electrode's energy storage capacity. The hybrid supercapacitor, integrating the optimized CC@CoS/NiCoMn-LDH-300 electrode with active carbon, demonstrates the highest energy density of 86 Wh kg-1 (under the power density of 850 W kg-1) and the long cycle stability of 89.7%. This study aims to go beyond simple binary LDH by constructing a ternary LDH with a hierarchical core-shell heterostructure to provide an effective and feasible new concept for high-performance supercapacitor electrode materials via rational structure design.
Abstract:
Li6PS5Cl is a highly wanted sulfide-solid-electrolyte (SSE) for developing all-solid-state lithium batteries, due to its high ionic conductivity, good processability and abundant compositional elements. However, its cyclability is poor because of harmful side reactions at the Li6PS5Cl/Li interface and growth of lithium dendrites inside Li6PS5Cl phase. Herein, we report a simple interface-engineering remedy to boost the electrochemical performance of Li6PS5Cl, by coating its surface with a Li-compatible electrolyte Li3OCl having low electronic conductivity. The obtained Li6PS5Cl@Li3OCl core@shell structure exhibits a synergistic effect. Consequently, compared with the bare Li6PS5Cl, this composite electrolyte exhibits great performance improvements: 1) In LielectrolyteLi symmetric cells, the critical current density at 30 ℃ gets increased from 0.6 mA cm-2 to 1.6 mA cm-2, and the lifetime gets prolonged from 320 h to 1400 h at the cycling current of 0.2 mA cm-2 or from 10 h to 900 h at the cycling current of 0.5 mA cm-2; 2) In Li|electrolyte|NCM721 full cells running at 30 ℃, the cycling capacity at 0.2 C (or 0.5 C) gets enhanced by 20% (or from unfeasible to be feasible) for 100 cycles and the rate capability reaches up to 2 C from 0.2 C; and in full cells running at 60 ℃, the cycling capacity is increased by 7% at 0.2 C and the rate capability is enhanced to 3.0 C from 0.5 C. The experimental studies and theoretical computations show that the performance enhancements are due to the confined electron penetration and suppressed lithium dendrites growth at the Li6PS5Cl@Li3OCl interface.
Abstract:
Three large π-conjugated and imine-based COFs, named TFP-TAB, TFP-TTA, and TTA-TTB, were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural units affect the efficiency of CO2 photoreduction. Results from both experiments and density-functional theory (DFT) calculations indicate the separation and transfer of the photoinduced charges is highly related to the triazine-N content and the conjugation degree in the skeletons of COFs. High-efficiency CO2 photoreduction can be achieved by rationally adjusting the number and position of both benzene and triazine rings in the COFs. Specifically, TTA-TTB, with orderly interlaced triazine-benzene heterojunctions, can suppress the recombination probability of electrons and holes, which effectively immobilizes the key species (COOH) and lowers the free energy change of the potential-determining step, and thus exhibits a superior visible-light-induced photocatalytic activity that yields 121.7 μmol HCOOH g-1 h-1. This research, therefore, helps to elucidate the effects of the different structural blocks in COFs on inherent heterogeneous photocatalysis for CO2 reduction at a molecular level.
Abstract:
Electrochemical reduction of CO2 is a promising approach to convert CO2 to high-valued chemicals and fuels. However, developing efficient electrocatalysts featuring desirable activity and selectivity is still a big challenge. In this work, a strategy of introducing functionalized molecules with desirable CO2 affinity to regulate Ag catalyst for promoting electrochemical reduction of CO2 was proposed. Specifically, 3-mercapto-1,2,4-triazole was introduced onto the Ag nanoparticle (Ag-m-Triz) for the first time to achieve selectively converting CO2 to carbon monoxide (CO). This Ag-m-Triz exhibits excellent performance for CO2 reduction with a high CO Faradaic efficiency (FECO) of 99.2% and CO partial current density of 85.0 mA cm-2 at -2.3 V vs. Ag/Ag+ in H-cell when combined with the ionic liquid-based electrolyte, 30 wt% 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6])-65 wt% acetonitrile (AcN)-5 wt% H2O, which is 2.5-fold higher than the current density in Ag-powder under the same condition. Mechanism studies confirm that the significantly improved performance of Ag-m-Triz originates from (i) the stronger adsorption ability of CO2 molecule and (ii) the weaker binding energy to form the COOH* intermediate on the surface of Ag-m-Triz compared with the Ag-powder catalyst, which boosts the conversion of CO2 to CO. This research provides a facile way to regulate electrocatalysts for efficient CO2 reduction by introducing functionalized molecules.
Abstract:
Covalent organic framework nanosheets (CONs) with porous crystalline features and ultrathin thickness are ideal candidates as membrane building blocks to form well-defined transfer nanochannels. The formidable challenge behind self-supporting CONs membrane lies in weak non-covalent interlayer interactions and thus loose stacking, insufficient strength and structure stabilities. Herein, we propose the fabrication of interlayer force-strengthened freestanding CONs membrane through the electrostatic attraction bridge effect of positively-charged amino-rich CONs (CON-NH2) to negatively-charged sulfonated CONs (CON-SO3H). Ultrathin and large lateral sized CON-SO3H and CON-NH2 are synthesized, followed by restacking to prepare freestanding CONs membrane with CON-SO3H as the membrane bulk. Benefiting from effective interlayer interconnection due to strong electrostatic interaction, the obtained CON-SO3H/CON-NH2 membrane displays features of ultrahigh integrity, dense stacking, eminent water/acid/base/organic solvents stabilities and mechanical strength (109 MPa). The shortened -SO3H distance contributes to construct site-continuous transfer pathways, and the deprotonated -SO3H and protonated -NH2 form acid-base pairs to decrease interfacial resistance, which impart membrane superior proton conductivity of 486 mS cm-1 (80 ℃, 100% RH). This interlayer force enhancement strategy offers a promising perspective on achieving densely-stacked CONs membrane with ultrahigh mechanical property and conduction performance for fuel cell application.
Abstract:
An innovative strategy was proposed by integration of membrane contactor (MC) with biphasic solvent for efficient CO2 capture from flue gas. The accessible fly ash-based ceramic membrane (CM) underwent hydrophobic modification through silane grafting, followed by fluoroalkylsilane decoration, to prepare the superhydrophobic membrane (CSCM). The CSCM significantly improved resistance to wetting by the biphasic solvent, consisting of amine (DETA) and sulfolane (TMS). Morphological characterizations and chemical analysis revealed the notable enhancements in pore structure and hydrophobic chemical groups for the modified membrane. Predictions of wetting/bubbling behavior based on static wetting theory referred the liquid entry pressure (LEP) of CSCM increased by 20 kPa compared to pristine CM. Compared with traditional amine solvents, the biphasic solvent presented the expected phase separation. Performance experiments demonstrated that the CO2 capture efficiency of the biphasic solvent increased by 7%, and the electrical energy required for desorption decreased by 32%. The 60-h continuous testing and supplemental characterization of used membrane confirmed the excellent adaptability and durability of the CSCMs. This study provides a potential approach for accessing hydrophobic ceramic membranes and biphasic solvents for industrial CO2 capture.
Abstract:
Due to insufficient energy density, supercapacitors (SCs) with preeminent-power and long cycle stability cannot be implemented in some practical applications. Exploring hybrid materials with redox activity to emerge high specific capacitance in ionic liquid (IL) electrolytes can solve this problem. Herein, we report a redox-organic molecule 2,6-diaminoanthraquinone (DAAQ) modified MXene (Ti3C2T)/Graphene (DAAQ-M/G) composite material. With the assist of graphene oxide (GO), MXene and graphene fabricate a three-dimensional (3D) interconnected structure as a conductive framework, which inhibits self-stacking of MXene monolayers and ensures high electronic conductivity. Meanwhile, DAAQ is loaded onto the M/G framework through covalent/non-covalent functionalization. The DAAQ as a spacer effectively enlarges the interlayer spacing of MXene nanosheets, and meanwhile produces reversible redox reactions during charge/discharge processes to provide additional Faradaic contribution to capacity. Therefore, the specific capacitance (capacity) of the DAAQ-M/G as the negative electrode material reaches to 226 F g-1 (306 C g-1) at 1 A g-1 in 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF4) electrolyte. Furthermore, an asymmetric supercapacitor (ASC) is assembled using DAAQ-M/G as the negative electrode and self-prepared organic molecule hydroquinone modified reduced graphene oxide (HQ-RGO) material as the positive electrode, with a high energy density of 43 Wh kg-1 at high power density of 1669 W kg-1. The ASC can maintain 80% of initial specific capacitance after 9000 cycles. This research can provide better support to develop advanced organic molecules-modified MXene composite materials for ionic liquid-based SCs.
Abstract:
Developing an efficient electrocatalyst for superior electrochemical water splitting (EWS) is crucial for achieving comprehensive hydrogen production. A heterostructured electrocatalyst, free of noble metals, Ti3C2 MXene nanosheet-integrated cobalt-doped nickel hydroxide (NHCoMX) composite was synthesized via a hydrothermal method. The abundant pores in the Ti3C2 MXene nanosheet (MX)-integrated microarchitecture increased the number of active sites and facilitated charge transfer, thus enhancing electrocatalysis. Specifically, the MX-enhanced charge transfer considerably transformed the microelectronic structure of cobalt-doped Ni(OH)2(NHCo), which promoted its hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Hence, as an EWS catalyst, NHCoMX exhibited an exceptional electrocatalytic activity, demonstrating OER and HER overpotentials of 310 mV and 73 mV, respectively, with low Tafel slopes of 65 mV dec-1 and 85 mV dec-1, respectively; it exhibited a current density of 10 mV cm-2 in 1.0 mol L-1 KOH, representing the closest efficiency to the noble state-of-the-art RuO2 and Pt/C catalyst. Furthermore, the developed electrocatalyst improved the activities of both HER and OER, leading to an overall EWS current density of 10 mA cm-2 at 1.72 V in an alkaline electrolyte with two electrodes. This study describes an efficient heterostructured NHCoMX composite electrocatalyst. It is significantly comparable to the noble state-of-the-art electrocatalysts and can be extended to fabricate resourceful catalysts for large-scale EWS applications.