Xiaojing Fan, Wenwei Sun, Fancheng Meng, Aiming Xing, Jiehua Liu. Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy&Environment, 2018, 3(1): 2-19. doi: 10.1016/j.gee.2017.08.002
Citation: Xiaojing Fan, Wenwei Sun, Fancheng Meng, Aiming Xing, Jiehua Liu. Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy&Environment, 2018, 3(1): 2-19. doi: 10.1016/j.gee.2017.08.002

Advanced chemical strategies for lithium–sulfur batteries: A review

doi: 10.1016/j.gee.2017.08.002
  • Lithium–sulfur (LiS) battery has been considered as one of the most promising rechargeable batteries among various energy storage devices owing to the attractive ultrahigh theoretical capacity and low cost. However, the performance of LiS batteries is still far from theoretical prediction because of the inherent insulation of sulfur, shuttling of soluble polysulfides, swelling of cathode volume and the formation of lithium dendrites. Significant efforts have been made to trap polysulfides via physical strategies using carbon based materials, but the interactions between polysulfides and carbon are so weak that the device performance is limited. Chemical strategies provide the relatively complemented routes for improving the batteries' electrochemical properties by introducing strong interactions between functional groups and lithium polysulfides. Therefore, this review mainly discusses the recent advances in chemical absorption for improving the performance of LiS batteries by introducing functional groups (oxygen, nitrogen, and boron, etc.) and chemical additives (metal, polymers, etc.) to the carbon structures, and how these foreign guests immobilize the dissolved polysulfides.

     

  • loading
  • [1]
    A.S.Aricò, P.Bruce, B.Scrosati, et al. Nat. Mater., 4 (2005),pp. 366-377
    [2]
    P.G.Bruce, S.A.Freunberger, L.J.Hardwick, et al. Nat. Mater., 11 (2012),pp. 19-29
    [3]
    M.K.Song, E.J.Cairns, Y.Zhang Nanoscale, 5 (2013),pp. 2186-2204
    [4]
    D.W.Wang, Q.Zeng, G.Zhou, et al. J. Mater. Chem. A, 1 (2013),pp. 9382-9394
    [5]
    S.S.Zhang J. Power Sources, 231 (2013),pp. 153-162
    [6]
    P.G.Bruce, L.J.Hardwick, K.M.Abraham MRS Bull., 36 (2011),pp. 506-512
    [7]
    J.Xu, K.Zhou, F.Chen, et al. ACS Sustain. Chem. Eng., 4 (2016),pp. 666-670
    [8]
    J.Q.Huang, T.Z.Zhuang, Q.Zhang, et al. ACS Nano, 9 (2015),pp. 3002-3011
    [9]
    F.Jin, S.Xiao, L.Lu, et al. Nano Lett., 16 (2016),pp. 440-447
    [10]
    B.Li, S.Li, J.Xu, et al. Energy Environ. Sci., 9 (2016),pp. 2025-2030
    [11]
    Y.Zhong, S.Wang, Y.Sha, et al. J. Mater. Chem. A, 4 (2016),pp. 9526-9535
    [12]
    M.Liu, X.Qin, Y.-B.He, et al. J. Mater. Chem. A, 5 (2017),pp. 5222-5234
    [13]
    P.Strubel, S.Thieme, T.Biemelt, et al. Adv. Funct. Mater., 25 (2015),pp. 287-297
    [14]
    Z.Lyu, D.Xu, L.Yang, et al. Nano Energy, 12 (2015),pp. 657-665
    [15]
    Y.Hou, J.Li, X.Gao, et al. Nanoscale, 8 (2016),pp. 8228-8235
    [16]
    C.Reitz, B.Breitung, A.Schneider, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 10274-10282
    [17]
    D.W.Xu, S.Xin, Y.You, et al. ChemNanoMat, 2 (2016),pp. 712-718
    [18]
    S.K.Park, J.Lee, T.Hwang, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 2430-2438
    [19]
    L.Yu, H.Hu, H.B.Wu, et al. Adv. Mater., 29 (2017)
    [20]
    K.Zhou, X.Fan, X.Wei, et al. Sci. China Tech. Sci., 60 (2017),pp. 175-185
    [21]
    G.Zhou, L.C.Yin, D.W.Wang, et al. ACS Nano, 7 (2013),pp. 5367-5375
    [22]
    C.P.Yang, Y.X.Yin, H.Ye, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 8789-8795
    [23]
    W.Zhou, C.Wang, Q.Zhang, et al. Adv. Energy Mater., 5 (2015)
    [24]
    J.Liu, W.Li, L.Duan, et al. Nano Lett., 15 (2015),pp. 5137-5142
    [25]
    H.Yao, G.Zheng, P.C.Hsu, et al. Nat. Commun., 5 (2014),p. 3943
    [26]
    S.Yuan, Z.Guo, L.Wang, et al. Adv. Sci., 2 (2015)
    [27]
    A.Manthiram, Y.Fu, S.H.Chung, et al. Chem. Rev., 114 (2014),pp. 11751-11787
    [28]
    S.H.Chung, R.Singhal, V.Kalra, et al. J. Phys. Chem. Lett., 6 (2015),pp. 2163-2169
    [29]
    M.Wild, L.O'Neill, T.Zhang, et al. Energy Environ. Sci., 8 (2015),pp. 3477-3494
    [30]
    R.Xu, J.Lu, K.Amine Adv. Energy Mater., 5 (2015)
    [31]
    M.A.Pope, I.A.Aksay Adv. Energy Mater., 5 (2015)
    [32]
    Y.Yang, G.Zheng, Y.Cui Chem. Soc. Rev., 42 (2013),pp. 3018-3032
    [33]
    J.R.Akridge, Y.V.Mikhaylik, N.White Solid State Ionics, 175 (2004),pp. 243-245
    [34]
    C.Barchasz, F.Molton, C.Duboc, et al. Anal. Chem., 84 (2012),pp. 3973-3980
    [35]
    S.Zhang, K.Ueno, K.Dokko, et al. Adv. Energy Mater., 5 (2015)
    [36]
    L.Qie, C.Zu, A.Manthiram Adv. Energy Mater., 6 (2016)
    [37]
    S.H.Chung, A.Manthiram ChemSusChem, 7 (2014),pp. 1655-1661
    [38]
    R.Fang, S.Zhao, P.Hou, et al. Adv. Mater., 28 (2016),pp. 3374-3382
    [39]
    H.Chen, C.Wang, Y.Dai, et al. Nano Energy, 26 (2016),pp. 43-49
    [40]
    M.Q.Zhao, H.J.Peng, G.L.Tian, et al. Adv. Mater., 26 (2014)
    [41]
    S.Choudhury, L.A.Archer Adv. Electron. Mater., 2 (2016)
    [42]
    S.Liu, G.R.Li, X.P.Gao ACS Appl. Mater. Interfaces, 8 (2016),pp. 7783-7789
    [43]
    Y.S.Su, A.Manthiram Nat. Commun., 3 (2012),p. 1166
    [44]
    M.Shaibani, A.Akbari, P.Sheath, et al. ACS Nano, 10 (2016),pp. 7768-7779
    [45]
    N.W.Li, Y.X.Yin, C.P.Yang, et al. Adv. Mater., 28 (2015),pp. 1853-1858
    [46]
    W.Luo, L.Zhou, K.Fu, et al. Nano Lett., 15 (2015),pp. 6149-6154
    [47]
    J.Q.Huang, Z.L.Xu, S.Abouali, et al. Carbon, 99 (2016),pp. 624-632
    [48]
    W.S.Zhi, H.Wang, N.Liu, et al. Chem. Sci., 5 (2014),pp. 1396-1400
    [49]
    L.Zhang, L.Ji, P.A.Glans, et al. Phys. Chem. Chem. Phys., 14 (2012),pp. 13670-13675
    [50]
    L.Ji, M.Rao, H.Zheng, et al. J. Am. Chem. Soc., 133 (2011),pp. 18522-18525
    [51]
    S.Zhu, Y.Wang, J.Jiang, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 17253-17259
    [52]
    Q.Pang, L.F.Nazar ACS Nano, 10 (2016),pp. 4111-4118
    [53]
    K.Han, J.Shen, S.Hao, et al. ChemSusChem, 7 (2014),pp. 2545-2553
    [54]
    F.Pei, T.An, J.Zang, et al. Adv. Energy Mater., 6 (2016)
    [55]
    G.Zhou, Y.Zhao, A.Manthiram Adv. Energy Mater., 5 (2015)
    [56]
    X.Yang, M.Zhen, T.Cai, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 25202-25210
    [57]
    Y.Qiu, W.Li, W.Zhao, et al. Nano Lett., 14 (2014),pp. 4821-4827
    [58]
    G.Zhou, E.Paek, G.S.Hwang, et al. Nat. Commun., 6 (2015),p. 7760
    [59]
    X.Gu, C.Tong, C.Lai, et al. J. Mater. Chem. A, 3 (2015),pp. 16670-16678
    [60]
    X.Wang, G.Li, J.Li, et al. Energy Environ. Sci. (2016),pp. 2533-2538
    [61]
    X.Tao, J.Wang, Z.Ying, et al. Nano Lett., 14 (2014),pp. 5288-5294
    [62]
    Z.Cui, C.Zu, W.Zhou, et al. Adv. Mater., 28 (2016),pp. 6926-6931
    [63]
    Z.Yuan, H.J.Peng, T.Z.Hou, et al. Nano Lett., 16 (2016),pp. 519-527
    [64]
    X.Li, Y.Lu, J.Liang, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 19550-19557
    [65]
    X.Q.Niu, X.L.Wang, D.H.Wang, et al. J. Mater. Chem. A, 3 (2015),pp. 17106-17112
    [66]
    J.Jiang, J.Zhu, W.Ai, et al. Nat. Commun., 6 (2015),p. 8622
    [67]
    J.Zhang, H.Hu, Z.Li, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 3982-3986
    [68]
    L.Fan, H.L.Zhuang, K.Zhang, et al. Adv. Sci., 3 (2016)
    [69]
    R.Demir-Cakan, M.Morcrette, F.Nouar, et al. J. Am. Chem. Soc., 133 (2011),pp. 16154-16160
    [70]
    J.Zheng, J.Tian, D.Wu, et al. Nano. Lett., 14 (2014),pp. 2345-2352
    [71]
    G.Li, M.Ling, Y.Ye, et al. Adv. Energy Mater., 5 (2015)
    [72]
    S.Wei, L.Ma, K.E.Hendrickson, et al. J. Am. Chem. Soc., 137 (2015),pp. 12143-12152
    [73]
    W.Zhou, H.Chen, Y.Yu, et al. ACS Nano, 7 (2013),pp. 8801-8808
    [74]
    J.Shan, Y.Liu, Y.Su, et al. J. Mater. Chem. A, 4 (2015),pp. 314-320
    [75]
    Z.Ma, L.Tao, D.Liu, et al. J. Mater. Chem. A, 5 (2017),pp. 9412-9417
    [76]
    J.Zhang, Y.Cai, Q.Zhong, et al. Nanoscale, 7 (2015),pp. 17791-17797
    [77]
    H.Yan, M.Cheng, B.Zhong, et al. Ionics (2016),pp. 1-8
    [78]
    Y.Tan, Z.Zheng, S.Huang, et al. J. Mater. Chem. A, 5 (2017),pp. 8360-8366
    [79]
    W.Chen, T.Qian, J.Xiong, et al. Adv. Mater., 29 (2017)
    [80]
    L.Yan, J.Yu, J.Houston, et al. Green Energy Environ., 2 (2017),pp. 84-99
    [81]
    J.Song, T.Xu, M.L.Gordin, et al. Adv. Funct. Mater., 24 (2014),pp. 1243-1250
    [82]
    P.Zhu, J.Song, D.Lv, et al. J. Phys. Chem. C, 118 (2014),pp. 7765-7771
    [83]
    S.Yuan, J.L.Bao, L.Wang, et al. Adv. Energy Mater., 6 (2015)
    [84]
    J.Balach, H.K.Singh, S.Gomoll, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 14586-14595
    [85]
    S.Niu, W.Lv, G.Zhou, et al. Chem. Commun., 51 (2015),pp. 17720-17723
    [86]
    Z.Li, J.Zhang, B.Guan, et al. Nat. Commun., 7 (2016)
    [87]
    W.Li, Z.Liang, Z.Lu, et al. Nano Lett., 15 (2015),pp. 7394-7399
    [88]
    R.Ponraj, A.G.Kannan, J.H.Ahn, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 4000-4006
    [89]
    W.Li, J.Hicksgarner, J.Wang, et al. Chem. Mater., 26 (2014),pp. 3403-3410
    [90]
    N.Mosavati, V.R.Chitturi, S.O.Salley, et al. J. Power Sources, 321 (2016),pp. 87-93
    [91]
    C.Lin, W.Zhang, L.Wang, et al. J. Mater. Chem. A, 4 (2016),pp. 5993-5998
    [92]
    S.S.Zhang, D.T.Tran J. Mater. Chem. A, 4 (2016),pp. 4371-4374
    [93]
    Z.Xiao, Z.Yang, L.Wang, et al. Adv. Mater., 27 (2015)
    [94]
    Z.Wang, X.Li, Y.Cui, et al. Cryst. Growth Des., 13 (2013),pp. 5116-5120
    [95]
    C.J.Hart, M.Cuisinier, X.Liang, et al. Chem. Commun., 51 (2015),pp. 2308-2311
    [96]
    X.Liang, A.Garsuch, L.F.Nazar Angew. Chem. Int. Ed., 54 (2015),pp. 3907-3911
    [97]
    T.-G.Jeong, D.S.Choi, H.Song, et al. ACS Energy Lett., 2 (2017),pp. 327-333
    [98]
    G.Zhou, J.Sun, Y.Jin, et al. Adv. Mater., 29 (2017)
    [99]
    H.B.Wu, S.Wei, L.Zhang, et al. Chem. Eur. J., 19 (2013),pp. 10804-10808
    [100]
    F.Lee, M.-C.Tsai, M.-H.Lin, et al. J. Mater. Chem. A, 5 (2017),pp. 6708-6715
    [101]
    M.H.Yap, K.L.Fow, G.Z.Chen Green Energy Environ., 2 (2017),pp. 218-245
    [102]
    C.Ouyang, S.Feng, J.Huo, et al. Green Energy Environ., 2 (2017),pp. 134-141
    [103]
    Z.Ma, Z.Li, K.Hu, et al. J. Power Sources, 325 (2016),pp. 71-78
    [104]
    D.Rao, L.Zhang, Y.-h.Wang, et al. J. Phys. Chem. C, 121 (2017),pp. 11047-11054
    [105]
    J.Park, B.-C.Yu, J.S.Park, et al. Adv. Energy Mater (2017),p. 1602567
    [106]
    H.Hu, H.Cheng, Z.Liu, et al. Nano Lett., 15 (2015),pp. 5116-5123
    [107]
    K.Zhang, Y.Xu, Y.Lu, et al. J. Mater. Chem. A, 4 (2016),pp. 6404-6410
    [108]
    W.S.Zhi, Q.Zhang, W.Li, et al. Chem. Sci., 4 (2013),pp. 3673-3677
    [109]
    Y.Cui, Y.Fu ACS Appl. Mater. Interfaces, 7 (2015),pp. 20369-20376
    [110]
    F.Wu, Y.Ye, R.Chen, et al. Nano Lett., 15 (2015),pp. 7431-7439
    [111]
    Y.Deng, H.Xu, Z.Bai, et al. J. Power Sources, 300 (2015),pp. 386-394
    [112]
    C.H.Chang, S.H.Chung, A.Manthiram J. Mater. Chem. A, 3 (2015),pp. 18829-18834
    [113]
    W.Li, G.Zheng, Y.Yang, et al. Proc. Natl. Acad. Sci., 110 (2013),pp. 7148-7153
    [114]
    B.-C.Yu, J.-W.Jung, K.Park, et al. Energy Environ. Sci., 10 (2017),pp. 86-90
    [115]
    W.Hua, Z.Yang, H.Nie, et al. ACS Nano, 11 (2017),pp. 2209-2218
    [116]
    G.Hu, Z.Sun, C.Shi, et al. Adv. Mater., 29 (2017)
    [117]
    L.Wang, Z.Dong, D.Wang, et al. Nano Lett., 13 (2013),pp. 6244-6250
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (305) PDF downloads(81) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return