Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
M. González-Castaño, C. Morales, J. C. Navarro de Miguel, J. H. Boelte, O. Klepel, J. I. Flege, H. Arellano-García. Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts. Green Energy&Environment, 2023, 8(3): 744-756. doi: 10.1016/j.gee.2021.05.007
Citation: M. González-Castaño, C. Morales, J. C. Navarro de Miguel, J. H. Boelte, O. Klepel, J. I. Flege, H. Arellano-García. Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts. Green Energy&Environment, 2023, 8(3): 744-756. doi: 10.1016/j.gee.2021.05.007

Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts

doi: 10.1016/j.gee.2021.05.007
  • Among challenges implicit in the transition to the post-fossil fuel energetic model, the finite amount of resources available for the technological implementation of CO2 revalorizing processes arises as a central issue. The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes. Taking Ni and NiFe catalysts supported over γ-Al2O3 oxide as reference materials, this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO2 methanation. The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface. Displaying lower Turn Over Frequencies than Ni/Al catalyst, the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances. For NiFe catalysts, analogous Ni5Fe1 alloys were constituted over both alumina and biochar supports. The highest specific activity of the catalyst series, exhibited by the NiFe/C catalyst, was related to the development of surface basic sites along with weaker NiFe-C interactions, which resulted in increased Ni0:NiO surface populations under reaction conditions. In summary, the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.

     

  • • For CO2 methanation reaction, a forthright comparison with Al2O3 supported catalysts evidenced the suitability of carbon catalysts. • The activity of carbon supported catalysts is markedly determined by the surface basic sites. • The lower metal-carbon interactions increased the Ni5Fe1 alloy stability and resulted in larger Ni0/NiO surface ratios. • For Ni5Fe1 catalysts, improved catalytic performances were displayed by Ni5Fe1/C catalysts.
  • loading
  • [1]
    J.C. Navarro, M.A. Centeno, O.H. Laguna, J.A. Odriozola, Catalysts 8 (2018) 1-25.
    [2]
    (n.d.).
    [3]
    M.A.A. Aziz, A.A. Jalil, S. Triwahyono, M.W.A. Saad, Chem. Eng. J. 260 (2015) 757-764.
    [4]
    D. Pandey, G. Deo, J. Ind. Eng. Chem. 33 (2016) 99-107.
    [5]
    C. Italiano, J. Llorca, L. Pino, M. Ferraro, V. Antonucci, A. Vita, Appl. Catal. B Environ. 264 (2020) 118494.
    [6]
    P. Frontera, A. Macario, M. Ferraro, P.L. Antonucci, Catalysts 7 (2017) 1-28.
    [7]
    X. Lin, S. Wang, W. Tu, Z. Hu, Z. Ding, Y. Hou, R. Xu, W. Dai, Catal. Sci. Technol. 9 (2019) 731-738.
    [8]
    S. Utgenannt, F. Hansen, O. Klepel, S. Jarczewski, A. Wach, P. Kutrowski, Catal. Today 249 (2015) 38-44.
    [9]
    P. Zhang, L. Wang, S. Yang, J.A. Schott, X. Liu, S.M. Mahurin, C. Huang, Y. Zhang, P.F. Fulvio, M.F. Chisholm, S. Dai, Nat. Commun. 8 (2017).
    [10]
    L.R. Winter, E. Gomez, B. Yan, S. Yao, J.G. Chen, Appl. Catal. B Environ. 224 (2018) 442-450.
    [11]
    J. Wu, Z. Jin, B. Wang, Y. Han, Y. Xu, Z. Liang, Z. Wang, Ind. Eng. Chem. Res. (2019).
    [12]
    A. Alarcon, J. Guilera, J.A. Diaz, T. Andreu, Fuel Process. Technol. 193 (2019) 114-122.
    [13]
    S.A. Kondrat, P.J. Smith, P. Peter, P.A. Chater, J.H. Carter, D.J. Morgan, E.M. Fiordaliso, J.B. Wagner, T.E. Davies, L. Lu, J.K. Bartley, S.H. Taylor, M.J. Rosseinsky, G.J. Hutchings, M.S. Spencer, C.J. Kiely, G.J. Kelly, W. Colin, (2016).
    [14]
    W.L. Vrijburg, G. Garbarino, W. Chen, A. Parastaev, A. Longo, E.A. Pidko, E.J.M. Hensen, J. Catal. 382 (2020) 358-371.
    [15]
    D. Pandey, G. Deo, J. Mol. Catal. A Chem. 382 (2014) 23-30.
    [16]
    J. Sehested, K.E. Larsen, A.L. Kustov, A.M. Frey, T. Johannessen, T. Bligaard, M.P. Andersson, J.K. Noerskov, C.H. Christensen, Top. Catal. 45 (2007) 9-13.
    [17]
    B. Mutz, P. Sprenger, W. Wang, D. Wang, W. Kleist, J.D. Grunwaldt, Appl. Catal. A Gen. 556 (2018) 160-171.
    [18]
    S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. Van Beek, A. Comas-Vives, C. Coperet, C. Muller, J. Am. Chem. Soc. 139 (2017) 1937-1949.
    [19]
    K. Ray, G. Deo, Appl. Catal. B Environ. 218 (2017) 525-537.
    [20]
    A.I. Tsiotsias, N.D. Charisiou, I. V. Yentekakis, M.A. Goula, Nanomaterials 11 (2021) 1-34.
    [21]
    L. Pastor-Perez, E. Le Sache, C. Jones, S. Gu, H. Arellano-Garcia, T.R. Reina, Catal. Today 317 (2018) 108-113.
    [22]
    J. Ren, X. Qin, J.Z. Yang, Z.F. Qin, H.L. Guo, J.Y. Lin, Z. Li, Fuel Process. Technol. 137 (2015) 204-211.
    [23]
    A.C. Lausche, A. Medford, J.K. Norskov, F. Studt, Eng. Sci. Fundam. 2013 - Core Program. Area 2013 AIChE Annu. Meet. Glob. Challenges Eng. a Sustain. Futur. 2 (2013) 893-894.
    [24]
    S. Hwang, U.G. Hong, J. Lee, J.H. Baik, D.J. Koh, H. Lim, I.K. Song, Catal. Letters 142 (2012) 860-868.
    [25]
    C. Liang, Z. Ye, D. Dong, S. Zhang, Q. Liu, G. Chen, C. Li, Y. Wang, X. Hu, Fuel 254 (2019) 115654.
    [26]
    M.A. Serrer, K.F. Kalz, E. Saraci, H. Lichtenberg, J.D. Grunwaldt, ChemCatChem 11 (2019) 5018-5021.
    [27]
    B. Mutz, M. Belimov, W. Wang, P. Sprenger, M.A. Serrer, D. Wang, P. Pfeifer, W. Kleist, J.D. Grunwaldt, ACS Catal. 7 (2017) 6802-6814.
    [28]
    T.K. Campbell, J.L. Falconer, Appl. Catal. 50 (1989) 189-197.
    [29]
    L.M. Gandia, M. Montes, Jounal Catal. 145 (1993) 276-288.
    [30]
    G. Bergeret, P. Gallezot, in: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, John Wiley & Sons, New York, 2008, pp. 738-765.
    [31]
    R.J.O. Mossanek, I. Preda, M. Abbate, J. Rubio-Zuazo, G.R. Castro, A. Vollmer, A. Gutierrez, L. Soriano, Chem. Phys. Lett. 501 (2011) 437-441.
    [32]
    T.C. Lin, G. Seshadri, J.A. Kelber, Appl. Surf. Sci. 119 (1997) 83-92.
    [33]
    I. Preda, R.J.O. Mossanek, M. Abbate, L. Alvarez, J. Mendez, A. Gutierrez, L. Soriano, Surf. Sci. 606 (2012) 1426-1430.
    [34]
    D. Torres, J.L. Pinilla, I. Suelves, Catalysts 8 (2018).
    [35]
    C.P. Kempter, Phys. Status Solidi 18 (1966) K117-K118.
    [36]
    M. Gonzalez-Castano, S. Ivanova, T. Ioannides, M.A. Centeno, J.A. Odriozola, Catal. Sci. Technol. 7 (2017) 1556-1564.
    [37]
    J.L. Santos, P. Maki-Arvela, A. Monzon, D.Y. Murzin, M.A. Centeno, Appl. Catal. B Environ. 268 (2020) 118423.
    [38]
    J.L. Santos, P. Maki-Arvela, J. Warna, A. Monzon, M.A. Centeno, D.Y. Murzin, Appl. Catal. B Environ. 268 (2020) 118425.
    [39]
    J.L. Santos, M.A. Centeno, J.A. Odriozola, J. Anal. Appl. Pyrolysis 148 (2020) 104821.
    [40]
    P. Kim, J.B. Joo, H. Kim, W. Kim, Y. Kim, I.K. Song, J. Yi, Catal. Letters 104 (2005) 181-189.
    [41]
    P. Michorczyk, P. Kustrowski, L. Chmielarz, J. Ogonowski, React. Kinet. Catal. Lett. 82 (2004) 121-130.
    [42]
    D. Tian, Z. Liu, D. Li, H. Shi, W. Pan, Y. Cheng, Fuel 104 (2013) 224-229.
    [43]
    M.A. Fraga, E. Jordao, M.J. Mendes, M.M.A. Freitas, J.L. Faria, J.L. Figueiredo, J. Catal. 209 (2002) 355-364.
    [44]
    F. Coloma, A. Sepulveda-Escribano, J.L.G. Fierro, F. Rodriguez-Reinoso, Langmuir 10 (1994) 750-755.
    [45]
    T. Van Herwijnen, H. Van Doesburg, W.A. De Jong, J. Catal. 28 (1973) 391-402.
    [46]
    F. Koschany, D. Schlereth, O. Hinrichsen, Appl. Catal. B Environ. 181 (2016) 504-516.
    [47]
    H.W. Nesbitt, D. Legrand, G.M. Bancroft, Phys. Chem. Min. 27 (2000) 357-366.
    [48]
    G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle, G.L. Haller, J. Catal. 249 (2007) 370-379.
    [49]
    G. Monnier, S. Ivanova, J.L. Santos, C. Le, M.A. Centeno, A. Odriozola, 5 (2020).
    [50]
    C. Vogt, E. Groeneveld, G. Kamsma, M. Nachtegaal, L. Lu, C.J. Kiely, P.H. Berben, F. Meirer, B.M. Weckhuysen, Nat. Catal. 1 (2018) 127-134.
    [51]
    C. Vogt, M. Monai, E.B. Sterk, J. Palle, A.E.M. Melcherts, B. Zijlstra, E. Groeneveld, P.H. Berben, J.M. Boereboom, E.J.M. Hensen, F. Meirer, I.A.W. Filot, B.M. Weckhuysen, Nat. Commun. 10 (2019) 1-10.
    [52]
    M. Gonzalez-Castano, E. Le Sache, S. Ivanova, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Appl. Catal. B Environ. 222 (2018) 124-132.
    [53]
    G.M. Psofogiannakis, G.E. Froudakis, J. Am. Chem. Soc. 131 (2009) 15133-15135.
    [54]
    C. Mebrahtu, F. Krebs, S. Perathoner, S. Abate, G. Centi, R. Palkovits, Catal. Sci. Technol. 8 (2018) 1016-1027.
    [55]
    G. Giorgianni, C. Mebrahtu, M.E. Schuster, A.I. Large, G. Held, P. Ferrer, F. Venturini, D. Grinter, R. Palkovits, S. Perathoner, G. Centi, S. Abate, R. Arrigo, Phys. Chem. Chem. Phys. 22 (2020) 18788-18797.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return