With large-scale commercial applications of lithium-ion batteries (LIBs), lots of spent LIBs will be produced and cause huge waste of resources and greatly increased environmental problems. Thus, recycling spent LIB materials is inevitable. Due to high added-value features, converting spent LIB cathode materials into catalysts exhibits broad application prospects. Inspired by this, we review the high-added-value reutilization of spent LIB materials toward catalysts of energy conversion. First, the failure mechanism of spent LIB cathode materials are discussed, and then the transformation and modification strategies are summarized and analyzed to improve the transformation efficiency of failed cathode materials and the catalytic performance of catalysts, respectively. Moreover, the electrochemical applications of failed cathode material derived catalysts are introduced, and the key problems and countermeasures are analyzed and proposed. Finally, the future development trend and prospect of high-added-value reutilization for spent LIB cathode materials toward catalysts are also given. This review will predictably advance the awareness of valorizing spent lithium-ion battery cathode materials for catalysis.