G. Sibi. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy&Environment, 2016, 1(2): 172-177. doi: 10.1016/j.gee.2016.08.002
Citation: G. Sibi. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy&Environment, 2016, 1(2): 172-177. doi: 10.1016/j.gee.2016.08.002

Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

doi: 10.1016/j.gee.2016.08.002
  • Hexavalent chromium [Cr(VI)] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI) offers a potential alternative to conventional metal removal methods. Dried biomass ofChlorella vulgaris was used as biosorbent for the removal of Cr(VI) from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC) value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R 2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI) from electroplating and galvanizing industry effluents.

     

  • loading
  • [1]
    N.A.Adesola Babarinde, O.O.Oyesiku, O.F.Dairo Int. J. Phys. Sci., 2 (11),pp. 300-304
    [2]
    N.S.Ali, K.Mo, M.Kim KSCE J. Civ. Eng., 16 (5),pp. 708-713
    [3]
    [4]
    R.A.Anderson Regul. Toxicol. Pharmacol., 26 (1997),pp. S35-S41
    [5]
    APHA (American Public Health Association)
    [6]
    S.R.Bai, T.E.Abraham Bioresour. Technol., 79 (2001),pp. 73-81
    [7]
    H.Barrera, F.Urena-Nunez, B.Bilyeu, et al. J. Hazard. Mater., 136 (3),pp. 846-853
    [8]
    G.Blazquez, F.Hernainz, M.Calero, et al. Chem. Eng. J., 148 (2009),pp. 473-479
    [9]
    G.Chhatwal
    [10]
    S.Congeevaram, S.Dhanarani, J.Park, et al. J. Hazard. Mater., 146 (2007),pp. 270-277
    [11]
    R.A.Corbitt
    [12]
    M.Costa Toxicol. Appl. Pharmacol., 188 (1),pp. 1-5
    [13]
    T.A.Davis, B.Volesky, A.Mucci Water Res., 37 (2003),pp. 4311-4330
    [14]
    E.Demirbas, M.Kobyab, E.Senturkb, et al. Water S. A., 30 (2004),pp. 533-539
    [15]
    L.Deng, Y.Zhang, J.Qin, et al. Miner. Eng., 22 (2009),pp. 372-377
    [16]
    G.C.Donmez, Z.Aksu, A.Ozturk, et al. Process Biochem., 34 (1999),pp. 885-892
    [17]
    N.Gaur, R.Dhankhar Int. J. Environ. Res., 3 (4),pp. 605-616
    [18]
    S.V.Gokhale, K.K.Jyoti, S.S.Lele Bioresour. Technol., 99 (2008),pp. 3600-3608
    [19]
    R.Gong, Y.Ding, H.Liu, et al. Chemosphere, 58 (2005),pp. 125-130
    [20]
    V.K.Gupta, A.K.Shrivastava, N.Jain Biotechnol. Bioeng., 35 (2001),pp. 4079-4085
    [21]
    O.Hamdaoui, M.Chiha Acta Chim. Slov., 54 (2),pp. 407-418
    [22]
    X.Han, Y.S.Wong, M.H.Wong, et al. J. Hazard. Mater., 146 (2007),pp. 65-72
    [23]
    X.Han, Y.S.Wong, N.F.Y.Tam J. Colloid Interface Sci., 303 (2),pp. 365-371
    [24]
    R.S.Khoubestani, N.Mirghaffari, O.Farhadian Environ. Prog. Sustain. Energy, 34 (4),pp. 949-956
    [25]
    P.King, N.Rakesh, S.Beenalahri, et al. J. Hazard. Mater., 142 (2007),pp. 340-347
    [26]
    Y.X.Li, Y.Wang, F.J.Zhao Biotechnol. Biotechnol. Equip., 29 (3),pp. 498-505
    [27]
    F.Li, P.Du, W.Chen, et al. Anal. Chim. Acta, 585 (2007),pp. 211-218
    [28]
    Y.Liu, X.Chang, Y.Guo, et al. J. Hazard. Mater., 135 (1–3),pp. 389-394
    [29]
    M.X.Loukidou, K.A.Matis, A.I.Zouboulis, et al. Water Res., 37 (18),pp. 4544-4552
    [30]
    K.Mohanty, M.Jha, B.C.Meikap, et al. Chem. Eng. Sci., 60 (11),pp. 3049-3059
    [31]
    S.Mor, R.Khaiwal, N.R.Bishnoi Bioresour. Technol., 8 (2006),pp. 954-957
    [32]
    C.L.Rollinson
    [33]
    H.Seki, A.Suzuki, H.Maruyama J. Colloid Interface Sci., 281 (2005),pp. 261-266
    [34]
    P.X.Sheng, L.H.Tan, P.J.Chen, et al. J. Dispers. Sci. Technol., 25 (2004),pp. 681-688
    [35]
    A.Shukla, Y.-H.Zhang, P.Duby, et al. J. Hazard. Mater., 95 (2002),pp. 137-152
    [36]
    G.Sibi J. Bioremediat. Biodegrad., 5 (2014),p. 249
    [37]
    R.Y.Stanier, R.Kunisawa, M.Mandel, et al. Bacteriol. Rev., 35 (1971),pp. 171-205
    [38]
    O.D.Uluozlu, A.Sari, M.Tuzen, et al. Bioresour. Technol., 99 (8),pp. 2972-2980
    [39]
    B.Volesky
    [40]
    B.Volesky Hydrometallurgy, 59 (2–3),pp. 203-216
    [41]
    B.Volesky Water Res., 41 (18),pp. 4017-4029
    [42]
    J.Wang, C.Chen Biotechnol. Adv., 27 (2009),pp. 195-226
    [43]
    J.Wang, C.Chen Biotechnol. Adv., 24 (5),pp. 427-451
    [44]
    Q.Yu, J.T.Matheickal, P.Kaewsarn Water Res., 33 (1999),pp. 1534-1537
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return