2016 Vol. 1, No. 1

Cover info & Content
Editorial
Abstract:
Commentary
Abstract:
Review article
Abstract:
Rechargeable alkali metal–air batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metal–air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal–air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal–air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal–air batteries.
Abstract:
Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode) are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power) density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1) non-aqueous electrolytes, 2) aqueous solutions, 3) ionic liquids, 4) polymer electrolytes, and 5) hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed.
Abstract:
The interest in ionic liquids (IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs) and quasi-solidified ionic liquid membranes (QSILMs) according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications.
Feature article
Abstract:
The challenges in the chemical processing industry today are environmental concerns, energy and capital costs. Catalytic distillation (CD) is a green reactor technology which combines a catalytic reaction and separation via distillation in the same distillation column. Utilization of CD in chemical process development could result in capital and energy savings, and the reduction of greenhouse gases. The efficacy of CD and the economic merits, in terms of energy and equipment savings, brought by CD for the production of biodiesel from waste oil such as yellow grease is quantified. Process flow sheets for industrial routes for an annual production of 10 million gallon ASTM purity biodiesel in a conventional process (reactor followed by distillation) and CD configurations are modeled in Aspen Plus. Material and energy flows, as well as sized unit operation blocks, are used to conduct an economic assessment of each process. Total capital investment, total operating and utility costs are calculated for each process. The waste oil feedstock is yellow grease containing both triglyceride and free fatty acid. Both transesterification and esterification reactions are considered in the process simulations. Results show a significant advantage of CD compared to a conventional biodiesel processes due to the reduction of distillation columns, waste streams and greenhouse gas emissions. The significant savings in capital and energy costs together with the reduction of greenhouse gases demonstrate that process intensification via CD is a feasible and new green process for the biodiesel production from waste oils.
Short communication
Abstract:
A small aggregate is composed of several or tens of molecules or ions, with at least one dimension in the range from a few to dozens of angstroms. Here, we named such aggregate system as Angstrom Aggregates (AA). AA with the specific size in angstrom meter might possess unique structure activity relationship. Unlike molecular level, nano system and the bulk, AA, an aggregate in angstrom scale is firstly proposed, its arrangement in order, electronic effect, surface interaction, confinement effect, is still unclear. However, recently, the structure and activity relationship of such aggregate in angstrom scale has attracted increasing interest in many areas, such as in ionic liquids, aqueous solution, catalytic system, and bio-system. As the physical and chemical propeties of AA strongly depends on its structure, the in situ characterization technique combined with theoretical methods should be developed to understand the exact interaction between the component of the clusters, the assembly formations, the special features, and the reaction activities. It has great scientific meaning to detect, represent and regulate the structure and function of AA precisely, facilitating in its application. A systematic and thorough research on AA in angstrom scale will promote the development of fundamental science and the progress of technology significantly.
Abstract:
Microalgae are considered a promising feedstock for the production of food ingredients, cosmetics, pharmaceutical products and biofuels. The energy intensity of drying and cell breaking of algae and solvent recovery afterwards hindered the route of algae biorefinery. In this work the influences of freeze drying and cell breaking to the extraction efficiency of crude lipid yield and fatty acid yield were investigated. Results showed that drying and cell breaking are not necessary for N-ethyl butylamine extraction, because good yields were obtained without. Crude lipid yield and fatty acid yield using N-ethyl butylamine were comparable with Bligh & Dyer extraction, making N-ethyl butylamine a candidate for further development of an energy efficient lipid extraction technology for non-broken microalgae.
Research paper
Abstract:
Cosensitization based on two or multiple dyes as “dye cocktails” can hit the target on compensating and broadening light-harvesting region. Two indoline D-A-π-A motif sensitizers ( WS-2 and WS-39 ) that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photovoltage. Due to the obvious “barrel effect”, both dyes show medium PCE around 8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photovoltage, and achieving the synergistic improvement in power conversion efficiency (PCE). Electronic impedance spectra (EIS) indicate that exploiting dye WS-39 with high VOC value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior VOC rather than using dye WS-2 with high JSC as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye (around 8.48–8.67%). It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells.
Abstract:
In spite of silicon has a superior theoretical capacity, the large volume expansion of Si anodes during Li+ insertion/extraction is the bottle neck that results in fast capacity fading and poor cycling performance. In this paper, we report a silicon, single-walled carbon nanotube, and ordered mesoporous carbon nanocomposite synthesized by an evaporation-induced self-assembly process, in which silicon nanoparticles and single-walled carbon nanotubes were added into the phenolic resol with F-127 for co-condensation. The ordered mesoporous carbon matrix and single-walled carbon nanotubes network could effectively accommodate the volume change of silicon nanoparticles, and the ordered mesoporous structure could also provide efficient channels for the fast transport of Li-ions. As a consequence, this hybrid material exhibits a reversible capacity of 861 mAh g−1 after 150 cycles at a current density of 400 mA g−1. It achieves significant improvement in the electrochemical performance when compared with the raw materials and Si nanoparticle anodes.