Turn off MathJax
Article Contents
En Zhao, Jingyuan Su, Hehe Fan, Bing Nan, Lina Li, Haifeng Qi, Weiwei Fang, Wenjun Zhang, Zupeng Chen. Defect Engineering of TiO2 for Efficient Photocatalytic Transfer Hydrogenation with Palladium as Cocatalyst and Water as a Hydrogen Source. Green Energy&Environment. doi: 10.1016/j.gee.2025.09.008
Citation: En Zhao, Jingyuan Su, Hehe Fan, Bing Nan, Lina Li, Haifeng Qi, Weiwei Fang, Wenjun Zhang, Zupeng Chen. Defect Engineering of TiO2 for Efficient Photocatalytic Transfer Hydrogenation with Palladium as Cocatalyst and Water as a Hydrogen Source. Green Energy&Environment. doi: 10.1016/j.gee.2025.09.008

Defect Engineering of TiO2 for Efficient Photocatalytic Transfer Hydrogenation with Palladium as Cocatalyst and Water as a Hydrogen Source

doi: 10.1016/j.gee.2025.09.008
  • Photocatalytic transfer hydrogenation using water as the proton source has emerged as an attractive and green approach for the catalytic reduction of unsaturated bonds. Herein, we report an oxygen-defective TiO2-supported palladium catalyst (Pd-TiO2-Ov) for efficient photocatalytic water-donating transfer hydrogenation of anethole towards 4-n-propylanisole in a high yield of 99.9%, which is significantly higher compared to the pristine TiO2-supported palladium catalyst (Pd-TiO2, 74%). The enhanced performance is ascribed to the presence of oxygen vacancies, which facilitate light absorption and suppress the recombination of photogenerated electron-hole pairs. Furthermore, the Pd-TiO2-Ov is versatile in hydrogenating various alkene substrates including those with hydroxyl, ether, fluoride, and chloride functional groups in full conversion, thus offering a green method for transfer hydrogenation of alkenes. This study provides new insights and advances in current hydrogenation technology with water as the proton source.

     

  • loading
  • [1]
    J. Gong, C. Li and M. R. Wasielewski, Chem. Soc. Rev. 48 (2019) 1862-1864.
    [2]
    X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang and Y. Wang, Chem. Soc. Rev., 2020, 49, 6198-6223.
    [3]
    Q. Wang and K. Domen, Chem. Rev. 120 (2019) 919-985.
    [4]
    M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du and L. Wang, Angew. Chem. Int. Edit. 59 (2020) 7230-7234.
    [5]
    H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi and K. Domen, Nature 598 (2021) 304-307.
    [6]
    L. Wu, F. Su, T. Liu, G.-Q. Liu, Y. Li, T. Ma, Y. Wang, C. Zhang, Y. Yang and S.-H. Yu, J. Am. Chem. Soc. 144 (2022) 20620-20629.
    [7]
    T. Uekert, M. F. Kuehnel, D. W. Wakerley and E. Reisner, Energy Environ. Sci. 11 (2018) 2853-2857.
    [8]
    X. Zou and Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.
    [9]
    J. Zhang, C. Muck-Lichtenfeld and A. Studer, Nature 619 (2023) 506-513.
    [10]
    F. Arcudi, L. DHordevic, N. Schweitzer, S. I. Stupp and E. A. Weiss, Nat. Chem. 14 (2022) 1007-1012.
    [11]
    P. Xie, J. Ding, Z. Yao, T. Pu, P. Zhang, Z. Huang, C. Wang, J. Zhang, N. Zecher-Freeman, H. Zong, D. Yuan, S. Deng, R. Shahbazian-Yassar and C. Wang, Nat. Commun. 13 (2022) 1375.
    [12]
    S. Gisbertz, S. Reischauer and B. Pieber, Nat. Catal. 3 (2020) 611-620.
    [13]
    J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff and D. W. C. MacMillan, Nature 524 (2015) 330-334.
    [14]
    D. Wang and D. Astruc, Chem. Rev. 115 (2015) 6621-6686.
    [15]
    W. J. Kang, B. Li, M. Duan, G. Pan, W. Sun, A. Ding, Y. Zhang, K. N. Houk and H. Guo, Angew. Chem. Int. Edit. 61 (2022) e202211562.
    [16]
    C. Han, P. Meng, E. R. Waclawik, C. Zhang, X. H. Li, H. Yang, M. Antonietti and J. Xu, Angew. Chem. Int. Edit. 57 (2018) 14857-14861.
    [17]
    G. Brieger and T. J. Nestrick, Chem. Rev. 74 (1974) 567-580.
    [18]
    C.-H. Hao, X.-N. Guo, Y.-T. Pan, S. Chen, Z.-F. Jiao, H. Yang and X.-Y. Guo, J. Am. Chem. Soc. 138 (2016) 9361-9364.
    [19]
    E. M. Zahran, N. M. Bedford, M. A. Nguyen, Y.-J. Chang, B. S. Guiton, R. R. Naik, L. G. Bachas and M. R. Knecht, J. Am. Chem. Soc. 136 (2013) 32-35.
    [20]
    E. Zhao, M. Li, B. Xu, X. L. Wang, Y. Jing, D. Ma, S. Mitchell, J. Perez-Ramirez and Z. Chen, Angew. Chem. Int. Edit. 61 (2022) e202207410.
    [21]
    C. Han, L. Du, M. Konarova, D.-C. Qi, D. L. Phillips and J. Xu, ACS Catal. 10 (2020) 9227-9235.
    [22]
    T. Jia, D. Meng, R. Duan, H. Ji, H. Sheng, C. Chen, J. Li, W. Song and J. Zhao, Angew. Chem. Int. Edit. 62 (2023) e202216511.
    [23]
    G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L.-M. Liu and Y. Li, Nat. Commun. 9 (2018) 1302.
    [24]
    L. Chen, J. Duan, P. Du, W. Sun, B. Lai and W. Liu, Water Res. 221 (2022) 118747.
    [25]
    J. J. Houser and B. A. Sibbio, J. Org. Chem. 42 (1977) 2145-2151.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (52) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return