Volume 10 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Jinzhi Lu, Tongxin Song, Weiping Ding, Yan Zhu. Advancements in catalytic hydrogenation of nitrocyclohexane to cyclohexanone oxime. Green Energy&Environment, 2025, 10(10): 2014-2028. doi: 10.1016/j.gee.2025.05.007
Citation: Jinzhi Lu, Tongxin Song, Weiping Ding, Yan Zhu. Advancements in catalytic hydrogenation of nitrocyclohexane to cyclohexanone oxime. Green Energy&Environment, 2025, 10(10): 2014-2028. doi: 10.1016/j.gee.2025.05.007

Advancements in catalytic hydrogenation of nitrocyclohexane to cyclohexanone oxime

doi: 10.1016/j.gee.2025.05.007
  • Cyclohexanone oxime serves as a crucial intermediate in the synthesis of caprolactam, which is an essential precursor for manufacturing nylon fibers, high-performance engineering plastics, and specialized plastic films. Catalytic hydrogenation of nitrocyclohexane to cyclohexanone oxime has been documented to be an atom-economical, green and environmentally friendly process. In this review, we first introduce the current design rules of catalysts for catalytic hydrogenation of nitrocyclohexane in terms of both active metals and supports. Secondly, we discuss the influence of solvent effects on the cyclohexanone oxime from the nitrocyclohexane conversion. In addition, we concisely discuss typically proposed reaction pathways for the hydrogenation of nitrocyclohexane to produce cyclohexanone oxime. Finally, we provide our perspectives on some issues for catalytic conversion of nitrocyclohexane to cyclohexanone oxime in the future.

     

  • loading
  • [1]
    E. Kowalewski, M. Krawczyk, G. Slowik, J. Kocik, I. S. Pieta, O. Chernyayeva, D. Lisovytskiy, K. Matus, A. Srebowata, Appl. Catal. A Gen. 618 (2021) 118134.
    [2]
    Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, B. Han, Nat. Commun. 10 (2019) 3851.
    [3]
    X. Shen, Q. Meng, M. Dong, J. Xiang, S. Li, H. Liu, B. Han, Chemsuschem 12 (2019) 5149-5156.
    [4]
    A. Kamimura, Y. Shiramatsu, T. Kawamoto, Green Energy Environ. 4 (2019) 166-170.
    [5]
    R. J. Lewis, K. Ueura, X. Liu, Y. Fukuta, T. E. Davies, D. J. Morgan, L. Chen, J. Qi, J. Singleton, J. K. Edwards, S. J. Freakley, C. J. Kiely, Y. Yamamoto, G. J. Hutchings, Science 376 (2022) 615-620.
    [6]
    P. Rubio-Marques, J. Carlos Hernandez-Garrido, A. Leyva-Perez, A. Corma, Chem. Commun. 50 (2014) 1645-1647.
    [7]
    H. Wang, D. Zhang, Y. Fan, L. Xie, Y. Luo, B. Zong, China Pet. Process. Pe. 21 (2019) 10-18.
    [8]
    R. S. Shukla, React. Kinet. Catal. L. 84 (2005) 109-114.
    [9]
    H. Li, Y. B. She, T. Wang, Front. Chem. Sci. Eng. 6 (2012) 356-368.
    [10]
    Y. Zhang, W. Dai, G. Wu, N. Guan, L. Li, Chin. J. Catal. 35 (2014) 279-285.
    [11]
    H. G. Liao, Y. J. Xiao, H. K. Zhang, P. L. Liu, K. Y. You, C. Wei, H. A. Luo, Catal. Commun. 19 (2012) 80-84.
    [12]
    X. D. Wang, N. Perret, M. A. Keane, Catal. A-Gen. 467 (2013) 575-584.
    [13]
    F. B. Yao, S. H. Liu, H. S. Cui, Y. Lv, Y. C. Zhang, P. L. Liu, F. Hao, W. Xiong, H. A. Luo, ACS Sustainable Chem. Eng. 9 (2021) 3300-3315.
    [14]
    Y. Zhang, X. Liao, H. Cui, H. A. Luo, Y. Lv, P. Liu, J. Colloid Interf. Sci. 678 (2024) 353-365.
    [15]
    S. H. Liu, F. Hao, P. L. Liu, H. A. Luo, RSC Adv. 5 (2015) 22863-22868.
    [16]
    Q. Wu, W. Zhou, H. Shen, R. Qin, Q. Hong, X. Yi, N. Zheng, CCS Chem. 5 (2023) 1215-1224.
    [17]
    K. I. Shimizu, T. Yamamoto, Y. Tai, A. Satsuma, J. Mol. Catal. A-Chem. 345 (2011) 54-59.
    [18]
    Q. Q. Zhang, J. Dong, Y. M. Liu, Y. Cao, H. Y. He, Y. D. Wang, Chem. Commun. 53 (2017) 2930-2933.
    [19]
    S. Zhang, P. Wang, Z. Xu, M. Gong, J. Cao, J. Shen, X. Fang, X. Xu, J. Xu, X. Wang, J. Catal. 442 (2025) 115893.
    [20]
    X. Xu, J. Bi, H. Zhang, F. Xue, Z. Zhou, Z. Fei, L. Li, X. Qiao, Sep. Purif. Technol. 360 (2025) 131027.
    [21]
    X. Liu, X. Chen, C. Wang, S. Xie, J. Wang, Y. Li, F. Liu, H. He, Appl. Catal. B-Environ. 364 (2025) 124843.
    [22]
    J. R. Colina, M. Ortega, J. Norambuena-Contreras, S. Ghysels, F. Ronsse, L. -E. Arteaga-Perez, Biomass Bioenerg. 193 (2025) 107547.
    [23]
    L. Liu, J. Lu, Y. Yang, W. Ruettinger, X. Gao, M. Wang, H. Lou, Z. Wang, Y. Liu, X. Tao, L. Li, Y. Wang, H. Li, H. Zhou, C. Wang, Q. Luo, H. Wu, K. Zhang, J. Ma, X. Cao, L. Wang, F. S. Xiao, Science 383 (2024) 94-101.
    [24]
    P. Yuan, X. Liao, H. Cui, F. Hao, W. Xiong, H. Luo, P. Liu, Y. Lv, Chem. Eng. J. 455 (2023) 140864.
    [25]
    P. Yuan, X. Liao, H. Cui, F. Hao, W. Xiong, H. A. Luo, Y. Lv, P. Liu, ACS Catal. 13 (2023) 3224-3241.
    [26]
    J. Lu, B. X. Han, H, -K. Yan, Phys. Chem. Chem. Phys. 1 (1999) 449-453.
    [27]
    W. Li, Z. Zhang, B. Han, S. Hu, Y. Xie, G. Yang, J. Phys. Chem. B 111 (2007) 6452-6456.
    [28]
    M. Hou, Q. Mei, B. Han, J. Colloid Interf. Sci. 449 (2015) 488-493.
    [29]
    E. Kowalewski, A. Srebowata, CATAL SCI TECHNOL Catal. Sci. Technol. 12 (2022) 5478-5487.
    [30]
    Y. H. Yan, S. H. Liu, F. Hao, P. L. Liu, H. A. Luo, Catal. Commun. 50 (2014) 9-12.
    [31]
    P. Serna, M. Lopez-Haro, J. J. Calvino, A. Corma, J. Catal. 263 (2009) 328-334.
    [32]
    Y. Zhang, X. Liao, H. Cui, H. A. Luo, Y. Lv, P. Liu, ACS Sustain Chem. Eng. 12 (2024) 595-609.
    [33]
    Y. Zhang, X. Liao, H. Cui, L. Huang, Y. Lv, P. Liu, Fuel 388 (2025) 134513.
    [34]
    Y. Wang, T. Gao, Y. Lu, Y. Wang, Q. Cao, W. Fang, Green Energy Environ. 7 (2022) 275-287.
    [35]
    Y. Jiang, Z. Liu, J. Song, I. Chang, J. Zeng, Green Energy Environ. 3 (2018) 360-367.
    [36]
    J. Lu, D. Yao, S. Tang, X. Cai, W. Ding, Y. Zhu, Chem. Commun. 61 (2025) 4038-4041.
    [37]
    N. adhavan, T. Takatani, C. D. Sherrill, M. Weck, Chem. Eur. J. 15 (2009) 1186-1194.
    [38]
    S. Samad, K. S. Loh, W. Y. Wong, T. K. Lee, J. Sunarso, S. T. Chong, W. -R. Daud, Int. J. Hydrog. Energy 43 (2018) 7823-7854.
    [39]
    F. Rodriguez-Reinoso, Carbon 36 (1998) 159-175.
    [40]
    B. Lin, Y. Guo, C. Cao, J. Ni, J. Lin, L. Jiang, Catal. Today 316 (2018) 230-236.
    [41]
    E. Auer, A. Freund, J. Pietsch, T. Tacke, Appl. Catal. A Gen. 73 (1998) 259-271.
    [42]
    P. L. Liu, H. K. Zhang, S. H. Liu, Z. J. Yao, F. Hao, H. G. Liao, K. Y. You, H. A. Luo, Chemcatchem 5 (2013) 2932-2938.
    [43]
    S. Wang, Y. Wang, Y. Gao, X. Zhao, Chin. J. Catal. 31 (2010) 637-644.
    [44]
    T. Wang, Z. Dong, T. Fu, Y. Zhao, T. Wang, Y. Wang, Y. Chen, B. Han, W. Ding, Chem. Commun. 51 (2015) 17712-17715.
    [45]
    S. Wang, Y. Jin, B. He, Y. Wang, X. Zhao, Sci. China Chem. 53 (2010) 1514-1519.
    [46]
    D. S. Potts, D. T. Bregante, J. S. Adams, C. Torres, D. W. Flaherty, Chem. Soc. Rev. 50 (2021) 12308-12337.
    [47]
    S. N. Steinmann, C. Michel, ACS Catal. 12 (2022) 6294-6301.
    [48]
    J. Sherwood, J. H. Clark, I. S. Fairlamb, J. M. Slattery, Green Chem. 21 (2019) 2164-2213.
    [49]
    E. Muramoto, D. A. Patel, W. Chen, P. Sautet, E. C. Sykes, R. J. Madix, J. Am. Chem. Soc. 144 (2022) 17387-17398.
    [50]
    Y. Ma, Z. Jiang, Y. Luo, X. Guo, X. Liu, Y. Luo, B. Shi, Green Energy Environ. 9 (2024) 597-603.
    [51]
    J. Liang, J. Jiang, T. Cai, C. Liu, J. Ye, X. Zeng, K. Wang, Green Energy Environ. 9 (2024) 1384-1406.
    [52]
    C. Cai, W. Tang, C. Qiao, B. Bao, P. Xie, S. Zhao, H. Liu, Green Energy Environ. 7 (2022) 782-791.
    [53]
    L. Mao, L. Xing, G. Li, D. Yin, K. You, H. Luo, Chem. Ind. Eng. Prog. 28 (2009) 1024-1026.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return