Volume 10 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Wenjun Zhu, Bofeng Zhang, Fanxing Bu, Minghai Zhao, Xinyong Tao, Keli Liu, Yuwen Fang, Wei Luo. 1T-MoS2 nanosheets with enlarged interlayer spacing vertically bonded on rGO for high-performance lithium-ion capacitors. Green Energy&Environment, 2025, 10(10): 1990-2001. doi: 10.1016/j.gee.2025.05.003
Citation: Wenjun Zhu, Bofeng Zhang, Fanxing Bu, Minghai Zhao, Xinyong Tao, Keli Liu, Yuwen Fang, Wei Luo. 1T-MoS2 nanosheets with enlarged interlayer spacing vertically bonded on rGO for high-performance lithium-ion capacitors. Green Energy&Environment, 2025, 10(10): 1990-2001. doi: 10.1016/j.gee.2025.05.003

1T-MoS2 nanosheets with enlarged interlayer spacing vertically bonded on rGO for high-performance lithium-ion capacitors

doi: 10.1016/j.gee.2025.05.003
  • 1T-MoS2 nanosheets, with metallic conductivity and high capacity, hold great potential for lithium-ion capacitors (LICs), but suffer from sluggish reaction kinetics due to dense stacking. Herein, 1T-MoS2 nanosheets with enlarged interlayer spacing, vertically bonded to reduced graphene oxide (rGO) (1T-MoS2/rGO), were designed using a hydrothermal-assisted dispersion and intercalation strategy. The active nitrogen species derived from N, N-dimethylformamide (DMF) not only bridge the rGO and MoS2 through strong Mo-N-C bonds to promote the formation of dispersed MoS2 nanosheets, but also intercalate into the MoS2 structure, further enlarging the interlayer spacing. This unique structure synergistically enhances meso- and microscale mass transfer outside and inside of the few-layered nanosheets, significantly improving electrochemical reaction kinetics and reducing the kinetic mismatch between the anode and cathode. Consequently, the resulting-1T-MoS2/rGO achieves a capacity of 500 mAh g-1 after 500 cycles at 5 A g-1 and a high rate performance of 587 mAh g-1 at a high rate of 10 A g-1. Moreover, the assembled 3D vertical 1T-MoS2/rGO//AC LIC delivers a high energy density of 100.3 Wh kg-1 at a power density of 1.0 kW kg-1, and long cycle stability with capacity retention as high as 91.02% after 5000 cycles at 2 A g-1. This work provides a generalizable strategy for engineering two-dimensional material-based electrodes, offering new insights into high-performance energy storage systems.

     

  • loading
  • [1]
    C. Zhao, S. Yao, C. Li, Y. An, S. Zhao, X. Sun, K. Wang, X. Zhang, Y. Ma, Chem. Eng. J. 497 (2024) 154535.
    [2]
    F.A. Kreth, L. K€ ops, C. Leibing, S.D. Magar, M. Hermesdorf, K. Schutjajew, C. Neumann, D. Leistenschneider, A. Turchanin, M. Oschatz, J.L.G. Urbano, A. Balducci, Adv. Energy Mater. 14 (2024) 2303909.
    [3]
    X. Guo, Y. Qiao, Z. Yi, C.M. Pedersen, Y. Wang, X. Tian, P. Han, Green Energy Environ. 9 (2024) 1427-1439.
    [4]
    S. Li, Y. Xu, W. Liu, X. Zhang, Y. Ma, Q. Peng, X. Zhang, X. Sun, K. Wang, Y. Ma, Green Energy Environ. 9 (2024) 573-583.
    [5]
    J. Zhang, H. Xiang, Z. Cao, S. Wang, M. Zhu, Green Energy Environ. 10 (2025) 322-344.
    [6]
    K. Li, P. Li, Z. Sun, J. Shi, M. Huang, J. Chen, S. Liu, Z. Shi, H. Wang, Green Energy Environ. 8 (2023) 1091-1101.
    [7]
    K. Zou, P. Cai, X. Deng, B. Wang, C. Liu, J. Li, H. Hou, G. Zou, X. Ji, J. Energy Chem. 60 (2021) 209-221.
    [8]
    Y. Xue, Y. Ji, X. Wang, H. Wang, X. Chen, X. Zhang, J. Tian, Green Energy Environ. 8 (2023) 864-873.
    [9]
    L. Yang, X. Wang, C. Zhu, H. Wang, J. Shi, J. Chen, W. Tian, Y. Zhu, M. Huang, J. Wu, Chem. Eng. J. 502 (2024) 157821.
    [10]
    L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, D. Mitlin, Energy Storage Mater. 27 (2020) 212-225.
    [11]
    C. Wang, C. Zhan, X. Ren, R. Lv, W. Shen, F. Kang, Z.-H. Huang, RSC Adv. 9 (2019) 42316-42323.
    [12]
    Y. Cui, W. Liu, W. Feng, Y. Zhang, Y. Du, S. Liu, H. Wang, M. Chen, J. Zhou, Adv. Funct. Mater. 30 (2020) 1908755.
    [13]
    J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. Gan, X. Tao, ACS Nano 11 (2017) 2459-2469.
    [14]
    P.S. Kiran, K.V. Kumar, N. Pandit, S. Indupuri, R. Kumar, V.V. Wagh, A. Islam, A.K. Keshri, Adv. Funct. Mater. 34 (2024) 2316266.
    [15]
    J. Jiang, Y. Zhang, Y. An, L. Wu, Q. Zhu, H. Dou, X. Zhang, Small Methods 3 (2019) 1900081.
    [16]
    R. Wang, S. Wang, D. Jin, Y. Zhang, Y. Cai, J. Ma, L. Zhang, Energy Storage Mater. 9 (2017) 195-205.
    [17]
    X. Deng, R. Zheng, W. Deng, H. Hou, G. Zou, X. Ji, Small 19 (2023) 2300256.
    [18]
    Z. Sun, C. Liu, J. Shi, M. Huang, S. Liu, Z. Shi, H. Wang, J. Alloys Compd. 902 (2022) 163827.
    [19]
    Y. Wang, W. Zhai, Y. Ren, Q. Zhang, Y. Yao, S. Li, Q. Yang, X. Zhou, Z. Li, B. Chi, J. Liang, Z. He, L. Gu, H. Zhang, Adv. Mater. 36 (2024) 2307269.
    [20]
    B. Hu, H. Guo, J. Liu, M. Cao, M. Li, Y. Cui, B. Li, Compos. Part A Appl. Sci. Manuf. 168 (2023) 107460.
    [21]
    R. Wang, K. Lan, R. Lin, X. Jing, C.-T. Hung, X. Zhang, L. Liu, Y. Yang, G. Chen, X. Liu, ACS Nano 15 (2021) 7713-7721.
    [22]
    C. Hu, K. Ma, Y. Hu, A. Chen, P. Saha, H. Jiang, C. Li, Green Energy Environ. 6 (2021) 75-82.
    [23]
    X. Sun, Y.a. Pang, S. Li, Y. Yu, X. Ding, L. Wang, Q. Zhang, Ceram. Int. 48 (2022) 21317-21326.
    [24]
    J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Energy Environ. Sci. 12 (2019) 344-350.
    [25]
    L. Wu, L. Feng, X. Mao, J. Niu, W. Xin, D. Wang, J. Energy Storage 70 (2023) 108011.
    [26]
    J. Bai, B. Zhao, J. Zhou, J. Si, Z. Fang, K. Li, H. Ma, J. Dai, X. Zhu, Y. Sun, Small 15 (2019) 1805420.
    [27]
    L. Wang, X. Zhang, Y. Xu, C. Li, W. Liu, S. Yi, K. Wang, X. Sun, Z.- S. Wu, Y. Ma, Adv. Funct. Mater. 31 (2021) 2104286.
    [28]
    W. Zhu, K. Liu, B. Zhang, Z. Wang, Y. Wang, Ceram. Int. 50 (2024) 26750-26759.
    [29]
    V.O. Koroteev, S.G. Stolyarova, A.A. Kotsun, E. Modin, A.A. Makarova, Y. Shubin, P.E. Plyusnin, A.V. Okotrub, L.G. Bulusheva, Carbon 173 (2021) 194-204.
    [30]
    Y. Zhang, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, Nanoscale 12 (2020) 11908-11915.
    [31]
    B. Huang, S. Liu, X. Zhao, Y. Li, J. Yang, Q. Chen, S. Xiao, W. Zhang, H.-E. Wang, G. Cao, Sci. China Mater. 64 (2021) 85-95.
    [32]
    B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, J. Am. Chem. Soc. 135 (2013) 19186-19192.
    [33]
    L.-N. Wang, X. Wu, F.-T. Wang, X. Chen, J. Xu, K.-J. Huang, J. Colloid Interface Sci. 583 (2021) 579-585.
    [34]
    Z. Guo, W. Cui, X. Zheng, W. Liu, X. Tong, Q. Xu, Surf. Interfaces 12 (2018) 41-49.
    [35]
    F. Wang, J. Wang, S. Guo, J. Zhang, Z. Hu, J. Chu, Sci. Rep. 7 (2017) 44712.
    [36]
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4 (2010) 2695-2700.
    [37]
    X. Wei, C.-C. Lin, C. Wu, N. Qaiser, Y. Cai, A.-Y. Lu, K. Qi, J.-H. Fu, Y.- H. Chiang, Z. Yang, L. Ding, O.S. Ali, W. Xu, W. Zhang, M.B. Hassine, J. Kong, H.-Y. Chen, V. Tung, Nat. Commun. 13 (2022) 6006.
    [38]
    H. Li, H. Li, Z. Wu, L. Zhu, C. Li, S. Lin, X. Zhu, Y. Sun, J. Mater. Sci. Technol. 123 (2022) 34-40.
    [39]
    D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G.R. Bhimanapati, S.M. Eichfeld, R.A. Burke, P.B. Shah, T.P. O'Regan, F.J. Crowne, A.G. Birdwell, J.A. Robinson, A.V. Davydov, T.G. Ivanov, ACS Nano 10 (2016) 3580-3588.
    [40]
    X. Ni, H. Chen, C. Liu, F. Zeng, H. Yu, A. Ju, J. Alloys Compd. 818 (2020) 152835.
    [41]
    W.H. Li, Y.M. Li, X.F. Liu, Z.Y. Gu, H.J. Liang, X.X. Zhao, J.Z. Guo, X.L. Wu, Adv. Funct. Mater. 32 (2022) 2201038.
    [42]
    W. Zhu, C. Shi, Y. Wang, Y. Hu, K. Liu, Diam. Relat. Mater. 130 (2022) 109436.
    [43]
    H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, ACS Appl. Mater. Interfaces 4 (2012) 5974-5980.
    [44]
    L. Wang, C. Wang, J.-Y. Zhang, J.-C. Qiu, X.-W. Fu, Z.-R. Zhang, J.- M. Feng, L. Dong, C.-L. Long, D.-J. Li, X.-W. Wang, B. Zhang, J.- F. Zhang, R.-R. Zhao, Rare Met. 43 (2024) 2161-2171.
    [45]
    D. Gui, Z. Wei, J. Chen, L. Yan, J. Li, P. Zhang, C. Zhao, J. Mater. Chem. A 9 (2021) 463-471.
    [46]
    Y. Zhang, H. Tao, T. Li, S. Du, J. Li, Y. Zhang, X. Yang, ACS Appl. Mater. Interfaces 10 (2018) 35206-35215.
    [47]
    T. He, X. Kang, F. Wang, J. Zhang, T. Zhang, F. Ran, Mater. Sci. Eng. R Rep. 154 (2023) 100737.
    [48]
    J. Wang, J. Qin, Y. Jiang, X. Wang, M. Cao, Nanoscale 12 (2020) 13781-13790. 2000
    [49]
    A. Alimi, I.B. Assaker, J. Mozaryn, D. Avila-Brande, E. Castillo- Martínez, R. Chtourou, Int. J. Energy Res. 46 (2022) 17163-17179.
    [50]
    H. Jiang, S. Wang, D. Shi, F. Chen, Y. Shao, Y. Wu, X. Hao, J. Mater. Chem. A 9 (2021) 1134-1142.
    [51]
    Z.-H. He, J.-F. Gao, L.-B. Kong, ACS Appl. Nano Mater. 2 (2019) 6238- 6248.
    [52]
    H.-Y. Zhou, L.-W. Lin, Z.-Y. Sui, H.-Y. Wang, B.-H. Han, ACS Appl. Mater. Interfaces 15 (2023) 12161-12170.
    [53]
    F. Yin, P. Yang, W. Yuan, A. Semencha, C. Zhang, P. Ji, G. Wang, J. Power Sources 488 (2021) 229452.
    [54]
    C. Liu, Q.-Q. Ren, S.-W. Zhang, B.-S. Yin, L.-F. Que, L. Zhao, X.-L. Sui, F.- D. Yu, X. Li, D.-M. Gu, Z.-B. Wang, Chem. Eng. J. 370 (2019) 1485-1492.
    [55]
    W. Wei, L. Wang, C. Liang, W. Liu, C. Li, Y. An, L. Zhang, X. Sun, K. Wang, H. Zhang, Chem. Eng. J. 474 (2023) 145788.
    [56]
    T. Yan, F. Wen, J. Duan, C. Zhu, J. Wen, Y. Wang, J. Tong, Z. Chen, Chem. Eng. J. 474 (2023) 145839.
    [57]
    Y. Jin, S. Tan, Z. Zhu, Y. He, L.Q. Bao, P. Saha, Q. Cheng, Appl. Surf. Sci. 598 (2022) 153778.
    [58]
    L. Shen, H. Lv, S. Chen, P. Kopold, P.A. van Aken, X. Wu, J. Maier, Y. Yu, Adv. Mater. 29 (2017) 1700142.
    [59]
    S. Liu, K. Jia, J. Yang, S. He, Z. Liu, X. Wang, J. Qiu, Chem. Eng. J. 475 (2023) 146181.
    [60]
    S.P. Kammampata, M.H.A. Jabbar, A.M. Abraham, C. Gumeci, N. Dale, Y. Furuya, V. Thangadurai, ECS Adv. 1 (2022) 030503.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return