Turn off MathJax
Article Contents
Jianran Ren, Zhiliang Zhu, Yanling Qiu, Fei Yu, Tao Zhou, Jie Ma, Jianfu Zhao. Simultaneous Adsorption-Reduction Boosted by In-situ Magnetic Field. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.006
Citation: Jianran Ren, Zhiliang Zhu, Yanling Qiu, Fei Yu, Tao Zhou, Jie Ma, Jianfu Zhao. Simultaneous Adsorption-Reduction Boosted by In-situ Magnetic Field. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.006

Simultaneous Adsorption-Reduction Boosted by In-situ Magnetic Field

doi: 10.1016/j.gee.2024.04.006
  • The mainstream silver recovery has problems such as resource waste, weak silver selectivity, and complicated operation. Here, self-propelled magnetic enhanced capture hydrogel (magnetic NbFeB/MXene/GO, MNMGH) was prepared by self-crosslinking encapsulation method. MNMGH achieved high selectivity (Kd=23.31 mL/g) in the acidic range, and exhibited ultrahigh silver recovery capacity (1604.8 mg/g), which greatly improved by 66 % with the assistance of in-situ magnetic field. The recovered silver crystals could be directly physically exfoliated, without acid/base additions. The selective sieving effect of adsorption, MNMGH preferentially adsorbed Ag(I), and then selectively reduced to Ag(0), realizing dual-selective recovery. The in-situ magnetic field enhanced selective adsorption by enhancing mass transfer, reactivity of oxygen- containing functional groups. Furthermore, density function theory simulations demonstrated that the in-situ magnetic field could lower the silver reduction reaction energy barrier to enhance the selective reduction. Three-drive synergy system (reduction drive, adsorption drive and magnetic drive) achieved ultrahigh silver recovery performance. This study pioneered an in-situ magnetic field assisted enhancement strategy for dual-selective (adsorption/reduction) recovery of precious metal silver, which provided new idea for low-carbon recovery of noble metal from industrial waste liquids.

     

  • loading
  • [1]
    A. Oluwalowo, N. Nguyen, S. Zhang, J. G. Park, R. Liang, Carbon 146(2019)224-231.
    [2]
    S. P. Deshmukh, S. Patil, S. Mullani, S. Delekar, Mater. Sci. Eng., C 97(2019)954-965.
    [3]
    L. Yang, Y. Tu, H. Li, W. Zhan, H. Hu, Y. Wei, C. Chen, K. Liu, P. Shao, M. Li, Angew. Chem. Int. Ed. 62(2023) e202308702.
    [4]
    L. Yang, Z. Gao, T. Liu, M. Huang, G. Liu, Y. Feng, P. Shao, X. Luo, Environ. Sci. Technol. 57(2023)4591-4597.
    [5]
    Y. Zhao, Y. Ding, W. Li, C. Liu, Y. Li, Z. Zhao, Y. Shan, F. Li, L. Sun, F. Li, Nat. Commun. 14(2023)4491.
    [6]
    K. Z. Elwakeel, A. S. Al-Bogami, E. Guibal, Chem. Eng. J. 403(2021)126265.
    [7]
    K. Krishna, Int. J. Phy. Sci. 4(2009)893-905.
    [8]
    M. B. Mooiman, K. C. Sole, N. Dinham, Met. Sustain.:GC, CP (2016)109-132.
    [9]
    H.-Y. Kang, J. M. Schoenung, Resour. Conserv. Recycl. 45(2005)368-400.
    [10]
    B. Drif, Y. Taha, R. Hakkou, M. Benzaazoua, Miner. Eng. 170(2021)107060.
    [11]
    C. Lei, B. Yan, T. Chen, X.-L. Wang, X.-M. Xiao, J. Clean. Prod. 181(2018)408-415.
    [12]
    F. Pooley, Nature 296(1982)642-643.
    [13]
    Y. Du, X. Tong, X. Xie, W. Zhang, H. Yang, Q. Song, Minerals 11(2021)586.
    [14]
    A. DąBrowski, Z. Hubicki, P. Podkościelny, E. Robens, Chemosphere 56(2004)91-106.
    [15]
    F. Almomani, R. Bhosale, M. Khraisheh, T. Almomani, Appl. Surf. Sci. 506(2020)144924.
    [16]
    C. Wang, X. Hu, M.-L. Chen, Y.-H. Wu, J. Hazard. Mater. 119(2005)245-249.
    [17]
    V. Gurusamy, R. Krishnamoorthy, B. Gopal, V. Veeraravagan, Inorg. Nano-Met. Chem. 47(2017)761-767.
    [18]
    J. Yu. Precious Metals Separation and Refining Technology. Chemical Industry Press, Beijing. 2006.
    [19]
    L. Xiao, Y. Wang, Y. Yu, G. Fu, P. Han, Z. Sun, S. Ye, J. Clean. Prod. 187(2018)708-716.
    [20]
    Z. Yao, P. Shao, D. Fang, J. Shao, D. Li, L. Liu, Y. Huang, Z. Yu, L. Yang, K. Yu, Chem. Eng. J. 427(2022)131470.
    [21]
    P. Shao, D. Liang, L. Yang, H. Shi, Z. Xiong, L. Ding, X. Yin, K. Zhang, X. Luo, J. Hazard. Mater. 387(2020)121676.
    [22]
    P. Shao, Z. Chang, M. Li, X. Lu, W. Jiang, K. Zhang, X. Luo, L. Yang, Nat. Commun. 14(2023)1365.
    [23]
    Y. Huang, W. Zhao, X. Zhang, H. Peng, Y. Gong, Chem. Eng. J. 375(2019)121935.
    [24]
    L. Xie, Z. Yu, S. M. Islam, K. Shi, Y. Cheng, M. Yuan, J. Zhao, G. Sun, H. Li, S. Ma, Adv. Funct. Mater. 28(2018)1800502.
    [25]
    M. Yuan, H. Yao, L. Xie, X. Liu, H. Wang, S. M. Islam, K. Shi, Z. Yu, G. Sun, H. Li, J. Am. Chem. Soc. 142(2019)1574-1583.
    [26]
    T. Shang, Z. Lin, C. Qi, X. Liu, P. Li, Y. Tao, Z. Wu, D. Li, P. Simon, Q. H. Yang, Adv. Funct. Mater. 29(2019)1903960.
    [27]
    H. Li, P. Liu, Y. Liang, J. Xiao, G. Yang, Nanoscale 4(2012)5082-5091.
    [28]
    F. Wu, T. Zhao, Y. Yao, T. Jiang, B. Wang, M. Wang, Chemosphere 238(2020)124638.
    [29]
    L. Yang, L. Xie, M. Chu, H. Wang, M. Yuan, Z. Yu, C. Wang, H. Yao, S. M. Islam, K. Shi, Angew. Chem. 134(2022) e202112511.
    [30]
    L. Ma, Q. Wang, S. M. Islam, Y. Liu, S. Ma, M. G. Kanatzidis, J. Am. Chem. Soc. 138(2016)2858-2866.
    [31]
    Z. Qin, H. Deng, R. Huang, S. Tong, Chem. Eng. J. 428(2022)132493.
    [32]
    L. Zhang, Z. Zeng, D.-W. Wang, Y. Zuo, J. Chen, X. Yan, Cell Rep. Phys. Sci. 2(2021)100455.
    [33]
    Y. Zhang, C. Liang, J. Wu, H. Liu, B. Zhang, Z. Jiang, S. Li, P. Xu, ACS Appl. Energy Mater. 3(2020)10303-10316.
    [34]
    K. Shen, X. Xu, Y. Tang, Nano Energy 92(2022)106703.
    [35]
    L. Zhang, Z. Zeng, D.-W. Wang, Y. Zuo, J. Chen, X. Yan, Cell Rep. Phys. Sci.(2021)100455.
    [36]
    S.-S. Chen, C.-Y. Cheng, C.-W. Li, P.-H. Chai, Y.-M. Chang, J. Hazard. Mater. 142(2007)362-367.
    [37]
    F. Liu, S. You, Z. Wang, Y. Liu, ACS ES&T Eng. 1(2021)1342-1350.
    [38]
    Z. Liu, M. Frasconi, J. Lei, Z. J. Brown, Z. Zhu, D. Cao, J. Iehl, G. Liu, A. C. Fahrenbach, Y. Y. Botros, Nat. Commun. 4(2013)1-9.
    [39]
    L. Ling, X. Y. Huang, W. X. Zhang, Adv. Mater. 30(2018)1705703.
    [40]
    R. Yang, Q. Zhao, B. Liu, J. Mater. Sci.:Mater. Electron. 31(2020)5054-5067.
    [41]
    M. Padilla Villavicencio, A. Escobedo Morales, M. Ruiz Peralta, M. Sánchez-Cantú, L. Rojas Blanco, E. Chigo Anota, J. H. Camacho García, F. Tzompantzi, Catal Lett. 150(2020)2385-2399.
    [42]
    R. Shvab, E. Hryha, L. Nyborg, Powder Metall. 60(2017)42-48.
    [43]
    B. R. Chrcanovic, A. R. Pedrosa, M. D. Martins, Mater. Res. 15(2012)372-382.
    [44]
    P. K. Kalambate, A. Sinha, Y. Li, Y. Shen, Y. Huang, Microchim. Acta 187(2020)1-12.
    [45]
    W. Vallejo, A. Rueda, C. Diaz-Uribe, C. Grande, P. Quintana, R. Soc. Open Sci. 6(2019)181824.
    [46]
    Y. Wan, X. Chen, G. Xiong, R. Guo, H. Luo, Materials Express 4(2014)429-434(426).
    [47]
    G. Li, W. Zhu, C. Zhang, S. Zhang, L. Liu, L. Zhu, W. Zhao, Bioresour. Technol. 206(2016)16-22.
    [48]
    J. Ferreira De Brito, L. De Oliveira Ferreira, M. C. Ragozoni Pereira, J. Paulo Da Silva, T. C. Ramalho, Water, Air, Soil Pollut. 223(2012)3545-3551.
    [49]
    L. Yang, F. Jia, S. Song, Sep. Purif. Technol. 186(2017)63-69.
    [50]
    L. Wu, L. Zeng, X. Jiang, J. Am. Chem. Soc. 137(2015)10052-10055.
    [51]
    X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian, X. Liu, C. Shen, J. Gracia, H.-J. Gao, H. Yang, Nat. Commun. 12(2021)1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (54) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return