Turn off MathJax
Article Contents
Qi Hao, Yijun Liu, Ren Zou, Ge Shi, Shilian Yang, Linxin Zhong, Wu Yang, Xiao Chi, Yunpeng Liu, Shimelis Admassie, Xinwen Peng. g-C3N4 nanosheets coupled with CoSe2 as co-catalyst for efficient photooxidation of xylose to xylonic acid. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.004
Citation: Qi Hao, Yijun Liu, Ren Zou, Ge Shi, Shilian Yang, Linxin Zhong, Wu Yang, Xiao Chi, Yunpeng Liu, Shimelis Admassie, Xinwen Peng. g-C3N4 nanosheets coupled with CoSe2 as co-catalyst for efficient photooxidation of xylose to xylonic acid. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.004

g-C3N4 nanosheets coupled with CoSe2 as co-catalyst for efficient photooxidation of xylose to xylonic acid

doi: 10.1016/j.gee.2024.04.004
  • Photocatalysis has emerged as an effective approach to sustainably convert biomass into value-added products. CoSe2 is a promising non-precious, efficient cocatalyst for photooxidation, which can facilitate the separation of photogenerated electron-holes, increase the reaction rates, and enhance photocatalytic efficiency. In this work, we synthesized a stable and efficient photocatalysis system of CoSe2/g-C3N4 through attaching CoSe2 on g-C3N4 sheets, with a yield of 50.12 % for the selective photooxidation of xylose to xylonic acid. Under light illumination, the photogenerated electrons were prone to migrating from g-C3N4 to CoSe2 due to the higher work function of CoSe2, resulting in the accelerated separation of photogenerated electron-holes and the promoted photooxidation. Herein, this study reveals the unique function of CoSe2, which can significantly promote oxygen adsorption, work as an electron sink and accelerate the generation of · O2-, thereby improving the selectivity toward xylonic acid over other by-products. This work provides useful insights into the design of selective photocatalysts by engineering g-C3N4 for biomass high-value utilization.

     

  • loading
  • [1]
    I.M. Tijjani Usman, Y.-C. Ho, L. Baloo, M.-K. Lam, W. Sujarwo, Bioresour. Technol. 366(2022)128167.
    [2]
    M. He, Y. Sun, B. Han, Angew. Chem., Int. Ed. 61(2022) e202112835.
    [3]
    Y.T. Tan, A.S.M. Chua, G.C. Ngoh, Bioresour. Technol. 297(2020)122522.
    [4]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. 8(2023)10-114.
    [5]
    M. Toivari, M.-L. Vehkomäki, Y. Nygård, M. Penttilä, L. Ruohonen, M.G. Wiebe, Bioresour. Technol. 133(2013)555-562.
    [6]
    P. Jędrzejczak, M.N. Collins, T. Jesionowski,Ł. Klapiszewski, Int. J. Biol. Macromol. 187(2021)624-650.
    [7]
    W. Niu, M.N. Molefe, J.W. Frost, J. Am. Chem. Soc. 125(2003)12998-12999.
    [8]
    M. Sauer, D. Porro, D. Mattanovich, P. Branduardi, Trends Biotechnol. 26(2008)100-108.
    [9]
    J. Ma, L. Zhong, X. Peng, R. Sun, Green Chem. 18(2016)1738-1750.
    [10]
    Z. Li, Y. Huang, X. Chi, D. Li, L. Zhong, X. Li, C. Liu, X. Peng, Green Energy Environ. 7(2022)1310-1317.
    [11]
    J. Ma, Z. Liu, J. Song, L. Zhong, D. Xiao, H. Xi, X. Li, R. Sun, X. Peng, Green Chem. 20(2018)5188-5195.
    [12]
    M. Bondar, M.M.R. Da Fonseca, M.T. Cesário, Biochem. Eng. J. 170(2021)107982.
    [13]
    R. Djellabi, D. Aboagye, M.G. Galloni, V. Vilas Andhalkar, S. Nouacer, W. Nabgan, S. Rtimi, M. Constantí, F. Medina Cabello, S. Contreras, Bioresour. Technol. 368(2023)128333.
    [14]
    G. Chatel, S. Valange, R. Behling, J.C. Colmenares, ChemCatChem. 9(2017)2615-2621.
    [15]
    C. Shi, F. Kang, Y. Zhu, M. Teng, J. Shi, H. Qi, Z. Huang, C. Si, F. Jiang, J. Hu, Chem. Eng. J.(Lausanne)452(2023)138980.
    [16]
    L. Chen, Y. Huang, R. Zou, J. Ma, Y. Yang, T. Li, M. Li, Q. Hao, H. Xie, X. Peng, Green Chem. 23(2021)1382-1388.
    [17]
    M. Li, L.X. Zhong, W. Chen, Y. Huang, Z. Chen, D. Xiao, R. Zou, L. Chen, Q. Hao, Z. Liu, R. Sun, X. Peng, Appl. Catal., B. 292(2021).
    [18]
    D. Jin, J. Ma, Y. Li, G. Jiao, K. Liu, S. Sun, J. Zhou, R. Sun, Fuel. 314(2022).
    [19]
    R.S. De Almeida Ribeiro, L.E. Monteiro Ferreira, V. Rossa, C.G.S. Lima, M.W. Paixão, R.S. Varma, T. De Melo Lima, ChemSusChem. 13(2020)3992-4004.
    [20]
    X.-L. Song, L. Chen, L.-J. Gao, J.-T. Ren, Z.-Y. Yuan, Green Energy Environ.(2022).
    [21]
    X. Yang, J. Ma, S. Sun, Z. Liu, R. Sun, Green Chem. 24(2022)2104-2113.
    [22]
    J. Ma, X. Yang, S. Yao, Y. Guo, R. Sun, ChemCatChem. 14(2022) e202200097.
    [23]
    S. Dong, M. Chen, J. Zhang, J. Chen, Y. Xu, Green Energy Environ. 6(2021)715-724.
    [24]
    N. Chen, Y. Zhou, S. Cao, R. Wang, W. Jiao, Green Energy Environ. 8(2023)509-518.
    [25]
    J. Ding, X. Sun, Q. Wang, D.-S. Li, X. Li, X. Li, L. Chen, X. Zhang, X. Tian, K. Ostrikov, J. Alloys Compd. 873(2021)159871.
    [26]
    S. Xin, X. Ma, J. Lu, G. Zhang, S. Huo, M. Gao, P. Xu, W. Liu, W. Fu, Appl. Catal., B. 323(2023)122174.
    [27]
    X. Yu, Y. Zhan, T. Fan, Y. Zhang, S. Liang, L. Sun, X. Hu, W. Fang, Z. Chen, X. Yi, Carbon. 201(2023)1174-1183.
    [28]
    J. Jia, T. Zhang, K. Li, J. Zhang, J. Wan, Y. Zhang, Int. J. Hydrogen Energy. 48(2023)3901-3915.
    [29]
    S. Borthakur, P. Basyach, L. Kalita, K. Sonowal, A. Tiwari, P. Chetia, L. Saikia, New J. Chem. 44(2020)2947-2960.
    [30]
    G. Zeng, Y. Deng, X. Yu, Y. Zhu, X. Fu, Y. Zhang, J. Power Sources 494(2021)229701.
    [31]
    Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Angew. Chem., Int. Ed. 53(2014)14569-14574.
    [32]
    M.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang, S.-H. Yu, ACS Nano. 8(2014)3970-3978.
    [33]
    X. Wu, J. Cheng, X. Li, Y. Li, K. Lv, Appl. Surf. Sci. 465(2019)1037-1046.
    [34]
    Y. Guo, Z. Yao, C. Shang, E. Wang, ACS Appl. Mater. Interfaces 9(2017)39312-39317.
    [35]
    L. Yao, S. Ju, T. Xu, X. Yu, ACS Nano. 15(2021)13662-13673.
    [36]
    V.G. Dileepkumar, K.R. Balaji, R. Vishwanatha, B.M. Basavaraja, S. Ashoka, I. M. Al-Akraa, M.S. Santosh, S. Rtimi, Chem. Eng. J.(Lausanne)446(2022)137023.
    [37]
    L. Xu, L. Li, Z. Hu, J.C. Yu, Appl. Catal., B. 328(2023)122490.
    [38]
    Q. Liang, Z. Li, X. Yu, Z.-H. Huang, F. Kang, Q.-H. Yang, Adv. Mater.(Weinheim, Ger.)27(2015)4634-4639.
    [39]
    Q. Lu, K. Eid, W. Li, A.M. Abdullah, G. Xu, R.S. Varma, Green Chem. 23(2021)5394-5428.
    [40]
    X. Liao, F. Wang, Y. Wang, W. Wei, Z. Xiao, H. Liu, Q. Hao, S. Lu, Z. Li, Appl. Surf. Sci. 503(2020)144089.
    [41]
    J. Cui, X. Lu, M. Guo, M. Zhang, L. Sun, J. Xiong, R. Zhang, X. Li, Y. Qiao, D. Li, M. Guo, Z. Yu, Catal. Sci. Technol. 13(2023)940-957.
    [42]
    Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Appl. Catal., B. 193(2016)248-258.
    [43]
    R. Cui, J. Ma, K. Liu, Z. Ali, J. Zhang, Z. Liu, X. Li, S. Yao, R. Sun, Mol. Catal. 531(2022)112653.
    [44]
    S. Sun, S. Sun, K. Liu, L.-P. Xiao, J. Ma, R. Sun, Green Chem. 25(2023)736-745.
    [45]
    X. Yang, K. Liu, J. Ma, R. Sun, Green Chem. 24(2022)5894-5903.
    [46]
    D. Jin, J. Ma, R. Sun, J. Mater. Chem. C. 10(2022)3500-3509.
    [47]
    J. Ma, Y. Li, D. Jin, X. Yang, G. Jiao, K. Liu, S. Sun, J. Zhou, R. Sun, Appl. Catal., B. 299(2021)120698.
    [48]
    J. Ma, D. Jin, X. Yang, S. Sun, J. Zhou, R. Sun, Green Chem. 23(2021)4150-4160.
    [49]
    K. Liu, Z. Liu, S. Yao, S. Sun, J. Ma, R. Sun, Appl. Catal., B. 316(2022)121573.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (32) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return