Turn off MathJax
Article Contents
Wei Li, Shu Zhang, Xinya Bu, Jing Luo, Yi Zhang, Mengyu Yan, Ting Quan, Yanli Zhu. Preparation and performance of highly-conductive dual-doped Li7La3Zr2O12 solid electrolytes for thermal batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.002
Citation: Wei Li, Shu Zhang, Xinya Bu, Jing Luo, Yi Zhang, Mengyu Yan, Ting Quan, Yanli Zhu. Preparation and performance of highly-conductive dual-doped Li7La3Zr2O12 solid electrolytes for thermal batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.002

Preparation and performance of highly-conductive dual-doped Li7La3Zr2O12 solid electrolytes for thermal batteries

doi: 10.1016/j.gee.2024.04.002
  • Garnet Li7La3Zr2O12 (LLZO) electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance, particularly Ga-doped LLZO (LLZGO), which exhibits high ionic conductivity. However, the limited size of the Li+ transport bottleneck restricts its high-current discharging performance. The present study focuses on the synthesis of Ga3+ and Ba2+ co-doped LLZO (LLZGBO) and investigates the influence of doping contents on the morphology, crystal structure, Li+ transport bottleneck size, and ionic conductivity. In particular, Ga0.32Ba0.15 exhibits the highest ionic conductivity (6.11E-2 S cm-1 at 550℃) in comparison with other compositions, which can be attributed to its higher-energy morphology, larger bottleneck and unique Li+ transport channel. In addition to Ba2+, Sr2+ and Ca2+ have been co-doped with Ga3+ into LLZO, respectively, to study the effect of doping ion radius on crystal structures and the properties of electrolytes. The characterization results demonstrate that the easier Li+ transport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions. As a result, the assembled thermal battery with Ga0.32Ba0.15-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mAh g-1 at an elevated temperature of 525℃. The discharge specific capacity of the thermal cell at 500 mA amounts to 63% of that at 100 mA, showcasing exceptional high-current discharging performance. When assembled as prototypes with fourteen single cells connected in series, the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm-2. These findings suggest that Ga, Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity, quick-initiating and high-current discharging thermal batteries.

     

  • loading
  • [1]
    W.J. Deng, X.L. Wang, Green Energy Environ. 7(2022)1129-1131.
    [2]
    W.J. Kou, Y.F. Zhang, W.J. Wu, Z.B. Guo, Q.X. Hua, J.T. Wang, Green Energy Environ. 9(2024)71-80.
    [3]
    Z.F. Yang, Q. Zhang, T.Q. Wu, Q.K. Li, J.M. Shi, J.Q. Gan, S.E. Xiang, H. Wang, C. Hu, Y.G. Tang, H.Y. Wang, Angew. Chem. Int. Ed. 63(2024) e202317453.
    [4]
    K. Pan, M. Li, W. Wang, S. Xing, Y. Dou, S. Gao, Z. Zhang, Z. Zhou, Green Energy Environ. 8(2023)939-944.
    [5]
    Y. Wang, W. Pan, K.W. Leong, S. Luo, X. Zhao, D.Y.C. Leung, Green Energy Environ. 8(2023)1117-1127.
    [6]
    G.Z. Liu, J. Yang, J.H. Wu, Z. Peng, X.Y. Yao, Adv. Mater.(2024)2311475.
    [7]
    H.G. He, L.T. Wang, M. Al-Abbasi, C.Y. Cao, H. Li, Z. Xu, S. Chen, W. Zhang, R.Q. Li, Y.K. Lai, Y.X. Tang, M.Z. Ge, Energy Environ. Mater. 0(2024) e12699.
    [8]
    W.Z. Lu, M.Z. Xue, C.M. Zhang, Energy Stor. Mater. 39(2021)108-129.
    [9]
    R. Grissa, L. Seidl, W. Dachraoui, U. Sauter, C. Battaglia, ACS Appl. Mater. Interfaces 14(2022)46001-46009.
    [10]
    Q. Guo, F.L. Xu, L. Shen, Z.Y. Wang, J. Wang, H. He, X. Yao, J. Power Sources 498(2021)229934.
    [11]
    Z. Wang, L. Shen, S.G. Deng, P. Cui, X.Y. Yao, Adv. Mater. 33(2021)2100353.
    [12]
    Q. Guo, F.L. Xu, L. Shen, S. Deng, Z. Wang, M. Li, X. Yao, Energy Mater. Adv. 2022(2022)8.
    [13]
    C.Y. Shao, Z.Y. Yu, H.X. Liu, Z.M. Zheng, N.A. Sun, C.L. Diao, Electrochim. Acta 225(2017)345-349.
    [14]
    Y. Li, Y. Cao, X. Guo, Solid State Ionics 253(2013)76-80.
    [15]
    S.W. Baek, J.M. Lee, T.Y. Kim, M.S. Song, Y. Park, J. Power Sources 249(2014)197-206.
    [16]
    S. Cao, S. Song, X. Xiang, Q. Hu, C. Zhang, Z. Xia, Y. Xu, W. Zha, J. Li, P.M. Gonzale, Y.H. Han, F. Chen, J. Korean Ceram. Soc. 56(2019)111-129.
    [17]
    J.M. Su, X. Huang, Z. Song, T.P. Xiu, M.E. Badding, J. Jin, Z.Y. Wen, Ceram. Int. 45(2019)14991-14996.
    [18]
    E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ionics 206(2012)28-32.
    [19]
    N. Rosenkiewitz, J. Schuhmacher, M. Bockmeyer, J. Deubener, J. Power Sources 278(2015)104-108.
    [20]
    X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.W. Nan, Y. Shen, J. Am. Chem. Soc. 139(2017)13779-13785.
    [21]
    M.V. Reddy, S. Adams, J. Solid State Electrochem. 21(2017)2921-2928.
    [22]
    L. Buannic, B. Orayech, J.M. López Del Amo, J. Carrasco, N.A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, A. Llordés, Chem. Mater. 29(2017)1769-1778.
    [23]
    E.J. Cussen, J. Mater. Chem. 20(2010)5167-5173.
    [24]
    C. Bernuy-Lopez, W. Manalastas, Jr., J.M. Lopez Del Amo, A. Aguadero, F. Aguesse, J.A. Kilner, Chem. Mater. 26(2014)3610-3617.
    [25]
    D. Rettenwander, G. Redhammer, F. Preishuber-Pflügl, L. Cheng, L. Miara, R. Wagner, A. Welzl, E. Suard, M.M. Doeff, M. Wilkening, J. Fleig, G. Amthauer, Chem. Mater. 28(2016)2384-2392.
    [26]
    L.H. Abrha, T.T. Hagos, Y. Nikodimos, H.K. Bezabh, G.B. Berhe, T.M. Hagos, C.-J. Huang, W.A. Tegegne, S.-K. Jiang, H.H. Weldeyohannes, S.H. Wu, W.N. Su, B.J. Hwang, ACS Appl. Mater. Interfaces 12(2020)25709-25717.
    [27]
    J. Wang, X. Li, X. Wang, G. Liu, W. Yu, X. Dong, J. Wang, Ceram. Int. 50(2024)6472-6480.
    [28]
    W. Liu, Q. Shi, Q. Qu, T. Gao, G. Zhu, J. Shao, H. Zheng, J. Mater. Chem. A 5(2017)145-154.
    [29]
    L. Li, L. Feng, Y. Zhang, H. Peng, Y. Zou, J. Sol-Gel Sci. Technol. 83(2017)660-665.
    [30]
    S. Narayanan, G.T. Hitz, E.D. Wachsman, V. Thangadurai, J. Electrochem. Soc. 162(2015) A1772.
    [31]
    D.O. Shin, K. Oh, K.M. Kim, K.-Y. Park, B. Lee, Y.-G. Lee, K. Kang, Sci. Rep. 5(2015)18053.
    [32]
    V. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 88(2005)411-418.
    [33]
    C. Xu, C. Jin, Y. Zhu, X. Zhang, L. Zhao, X. Pu, W. Li, L. Fu, L. Zhou, Ceram. Int. 49(2023)1791-1799.
    [34]
    B. Yao, L.C. Fu, Z. Liao, J.J. Zhu, W.L. Yang, D.Y. Li, L.P. Zhou, J. Alloys Compd. 900(2022)163448.
    [35]
    H. Guo, L.C. Tang, Q.Q. Tian, Y. Chu, B. Shi, X.C. Yin, H. Huo, X.P. Han, C.X. Yang, C. Wang, K.K. Tang, C. Wang, X.H. Zhang, J.Y. Wang, L. Kong, Z.G. Lu, ACS Appl. Mater. Interfaces 12(2020)50377-50387.
    [36]
    D.E. Glass, J.P. Jones, A.V. Shevade, D. Bhakta, E. Raub, R. Sim, R.V. Bugga, J. Power Sources 449(2020).
    [37]
    S. Fujiwara, M. Inaba, A. Tasaka, J. Power Sources 196(2011)4012-4018.
    [38]
    S.C. Guo, Y. Li, H. Zhang, Z.Z. Cao, L.Y. Wang, G.R. Li, Ceram. Int. 50(2024)559-565.
    [39]
    J. Gai, E. Zhao, F. Ma, D. Sun, X. Ma, Y. Jin, Q. Wu, Y. Cui, J. Euro. Ceram. Soc. 38(2018)1673-1678.
    [40]
    Y. Cao, C. Zhang, C. Gao, Y. Xie, C. Wang, W. Lan, F. Chang, X. Zhang, Y. Zhao, Y. Cui, Y. Cui, X. Liu, J. Electroanal. Chem. 921(2022)116660.
    [41]
    S.K.P.E. Al, J. Electrochem. Soc. 130(1983)264.
    [42]
    J.L. Payne, J.D. Percival, K. Giagloglou, C.J. Crouch, G.M. Carins, R.I. Smith, R.K.B. Gover, J.T.S. Irvine, J. Electrochem. Soc. 166(2019) A2660-A2664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return