Turn off MathJax
Article Contents
Jing Fan, Zhengxing Dai, Jian Cao, Liwen Mu, Xiaoyan Ji, Xiaohua Lu. Hybrid Data-Driven and Physics-Based Modeling for Viscosity Prediction of Ionic Liquids. Green Energy&Environment. doi: 10.1016/j.gee.2024.01.007
Citation: Jing Fan, Zhengxing Dai, Jian Cao, Liwen Mu, Xiaoyan Ji, Xiaohua Lu. Hybrid Data-Driven and Physics-Based Modeling for Viscosity Prediction of Ionic Liquids. Green Energy&Environment. doi: 10.1016/j.gee.2024.01.007

Hybrid Data-Driven and Physics-Based Modeling for Viscosity Prediction of Ionic Liquids

doi: 10.1016/j.gee.2024.01.007
  • Viscosity is one of the most important fundamental properties of fluids. However, accurate acquisition of viscosity for ionic liquids (ILs) remains a critical challenge. In his study, an approach integrating prior physical knowledge into the machine learning ML) model was proposed to predict the viscosity reliably. The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size, structure, and interactions of he ILs. Three strategies based on the residuals of the COSMO-RS model were created as the output of ML, where the strategy directly using experimental data was also studied for comparison. The performance of six ML algorithms was compared in all strategies, and the CatBoost model was identified as the optimal one. The strategies employing the relative deviations were superior to that using the absolute deviation, and the relative ratio revealed the systematic prediction error of the COSMO-RS model. The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set (R2 = 0.9999, MAE = 0.0325), reducing the average absolute relative deviation (AARD) in modeling from 52.45% to 1.54%. Features importance analysis indicated the average energy correction, solvation-free energy, and polarity moment were the key influencing the systematic deviation.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (63) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return