Turn off MathJax
Article Contents
Yi-lei Li, Xu-jia Liu, Yun-biao Wang, Ying Liu, Rui-hong Liu, Hui-ying Mu, Ying-juan Hao, Xiao-jing Wang, Fa-tang Li. Constructing interfacial electric field and Zn vacancy modulated ohmic junctions ZnS/NiS for photocatalytic H2 evolution. Green Energy&Environment. doi: 10.1016/j.gee.2023.12.007
Citation: Yi-lei Li, Xu-jia Liu, Yun-biao Wang, Ying Liu, Rui-hong Liu, Hui-ying Mu, Ying-juan Hao, Xiao-jing Wang, Fa-tang Li. Constructing interfacial electric field and Zn vacancy modulated ohmic junctions ZnS/NiS for photocatalytic H2 evolution. Green Energy&Environment. doi: 10.1016/j.gee.2023.12.007

Constructing interfacial electric field and Zn vacancy modulated ohmic junctions ZnS/NiS for photocatalytic H2 evolution

doi: 10.1016/j.gee.2023.12.007
  • Adjusting the interfacial transport efficiency of photogenerated electrons and the free energy of hydrogen adsorption through interface engineering is an effective means of improving the photocatalytic activity of semiconductor photocatalysts. Herein, hollow ZnS/NiS nanocages with ohmic contacts containing Zn vacancy (VZn-ZnS/NiS) are synthesized using ZIF-8 as templates. An internal electric field is constructed by Fermi level flattening to form ohmic contacts, which increase donor density and accelerate electron transport at the VZn-ZnS/NiS interface. The experimental and DFT results show that the tight interface and VZn can rearrange electrons, resulting in a higher charge density at the interface, and optimizing the Gibbs free energy of hydrogen adsorption. The optimal hydrogen production activity of VZn-ZnS/NiS is 10636 μmol h-1 g-1, which is 31.9 times that of VZn-ZnS. This study provides an idea for constructing sulfide heterojunctions with ohmic contacts and defects to achieve efficient photocatalytic hydrogen production.

     

  • loading
  • [1]
    D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2108475.
    [2]
    Z. Wang, L. Wang, B. Cheng, H. Yu, J. Yu, Small Methods 5 (2021) 2100979.
    [3]
    Z. Li, W. Huang, J. Liu, K. Lv, Q. Li, ACS Catal. 11 (2021) 8510-8520.
    [4]
    Y. Xu, M. Fan, W. Yang, Y. Xiao, L. Zeng, X. Wu, Q. Xu, C. Su, Q. He, Adv. Mater. 33 (2021) 2101455.
    [5]
    S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Adv. Sci. 4 (2017) 1600337.
    [6]
    Y.-L. Li, X.-J. Wang, Y.-J. Hao, J. Zhao, Y. Liu, H.-Y. Mu, F.-T. Li, Chin. J. Catal. 42 (2021) 1040-1050.
    [7]
    Y. Xue, Y. Ji, X. Wang, H. Wang, X. Chen, X. Zhang, J. Tian, Green Energy Environ. 8 (2021) 864-873.
    [8]
    J. Kundu, D.D. Mal, D. Pradhan, Inorg. Chem.Front. 8 (2021) 3055-3065.
    [9]
    V.N. Rao, P. Ravi, M. Sathish, M. Vijayakumar, M. Sakar, M. Karthik, S. Balakumar, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, J. Hazard. Mater. 415 (2021) 125588.
    [10]
    X. Liu, D. Wen, Z. Liu, J. Wei, D. Bu, S. Huang, Chem. Eng. J. 402 (2020) 126178.
    [11]
    P. Zhang, D. Luan, X.W. Lou, Adv. Mater. 32 (2020) 2004561.
    [12]
    Q. Sun, N. Wang, J. Yu, J.C. Yu, Adv. Mater. 30 (2018) 1804368.
    [13]
    Y. Li, Q. Zhao, Y. Zhang, Y. Li, L. Fan, F.-t. Li, X. Li, Appl. Catal. B 300 (2022) 120763.
    [14]
    G. Zhang, H. Wu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Green Energy Environ. 7 (2022) 176-204.
    [15]
    B. Wang, C. Chen, Y. Jiang, P. Ni, C. Zhang, Y. Yang, Y. Lu, P. Liu, Chem. Eng. J. 412 (2021) 128690.
    [16]
    S. Wang, P. Liu, C. Meng, Y. Wang, L. Zhang, L. Pan, Z. Yin, N. Tang, J.-J. Zou, J. Catal. 408 (2022) 196-205.
    [17]
    M. Sandroni, R. Gueret, K. Wegner, P. Reiss, J. Fortage, D. Aldakov, M.-N. Collomb, Energy Environ. Sci. 11 (2018) 1752-1761.
    [18]
    M.F. Kuehnel, C.E. Creissen, C.D. Sahm, D. Wielend, A. Schlosser, K.L. Orchard, E. Reisner, Angew. Chem. Int. Ed. 131 (2019) 5113-5117.
    [19]
    K. Sharma, P. Raizada, V. Hasija, P. Singh, A. Bajpai, V.-H. Nguyen, S. Rangabhashiyam, P. Kumar, A.K. Nadda, S.Y. Kim, J. Water Pollut. Control Fed. 43 (2021) 102217.
    [20]
    W. Wang, G.-J. Lee, P. Wang, Z. Qiao, N. Liu, J.J. Wu, Sep. Purif. Technol. 237 (2020) 116469.
    [21]
    G. Sun, J.-W. Shi, S. Mao, D. Ma, C. He, H. Wang, Y. Cheng, Chem. Eng. J. 429 (2022) 132382.
    [22]
    X. Hao, D. Xiang, Z. Jin, ChemCatChem 13 (2021) 4738-4750.
    [23]
    N. Xiao, S. Li, X. Li, L. Ge, Y. Gao, N. Li, Chin. J. Catal. 41 (2020) 642-671.
    [24]
    R. Zeng, C. Cheng, F. Xing, Y. Zou, K. Ding, C. Huang, Appl. Catal. B (2022) 121680.
    [25]
    J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 28 (2018) 1801983.
    [26]
    Y. Ma, B. Qiu, J. Zhang, M. Xing, ChemNanoMat 7 (2021) 368-379.
    [27]
    X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, J. Am. Chem. Soc. 139 (2017) 7586-7594.
    [28]
    W. Liu, D. Zhang, R. Wang, H. Xie, Z. Zhang, S. Qiu, J. Alloys Compd. (2023) 170957.
    [29]
    Y. Quan, G. Wang, C. Chang, Z. Jin, Nanoscale 15 (2023) 1186-1199.
    [30]
    N. Lu, M. Zhang, X. Jing, P. Zhang, Y. Zhu, Z. Zhang, Energy Environ. Mater. 6 (2023) e12338.
    [31]
    S. Li, L. Shao, Z. Yang, S. Cheng, C. Yang, Y. Liu, X. Xia, Green Energy Environ. 7 (2022) 246-256.
    [32]
    X. Li, J. Wang, H. Wang, B. Wang, Y.-Y. Li, J. Xu, M. Tian, H. Lin, L. Wang, ACS Applied Nano Mater. 6 (2023) 4437-4448.
    [33]
    L. Liu, Z. Wang, J. Zhang, O. Ruzimuradov, K. Dai, J. Low, Adv. Mater. (2023) 2300643.
    [34]
    H.S. Gujral, G. Singh, A.V. Baskar, X. Guan, X. Geng, A.V. Kotkondawar, S. Rayalu, P. Kumar, A. Karakoti, A. Vinu, Science and Technology of Adv. Mater. 23 (2022) 76-119.
    [35]
    J. Zhou, J. Zhao, R. Liu, Appl. Catal. B 278 (2020) 119265.
    [36]
    S. Zhu, X. Qian, D. Lan, Z. Yu, X. Wang, W. Su, Appl. Catal. B 269 (2020) 118806.
    [37]
    C.-J. Chang, Y.-H. Wei, K.-P. Huang, Int. J. Hydrogen Energy 42 (2017) 23578-23586.
    [38]
    H. Dai, X. Yuan, L. Jiang, H. Wang, J. Zhang, J. Zhang, T. Xiong, Coord. Chem. Rev. 441 (2021) 213985.
    [39]
    X. Hao, Y. Wang, J. Zhou, Z. Cui, Y. Wang, Z. Zou, Appl. Catal. B 221 (2018) 302-311.
    [40]
    K. Yu, H.-B. Huang, J.-T. Wang, G.-F. Liu, Z. Zhong, Y.-F. Li, H.-L. Cao, J. Lue, R. Cao, J. Mater. Chem. A 9 (2021) 7759-7766.
    [41]
    F. Kurnia, Y.H. Ng, R. Amal, N. Valanoor, J.N. Hart, Sol. Energy Mater. Sol. Cells 153 (2016) 179-185.
    [42]
    H. Hao, L. Zhang, W. Wang, S. Qiao, X. Liu, ACS Sustain. Chem. Eng. 7 (2019) 10501-10508.
    [43]
    X. Fang, L. Chen, H. Cheng, X. Bian, W. Sun, K. Ding, X. Xia, X. Chen, J. Zhu, Y. Zheng, Nano Research (2023) 1-11.
    [44]
    L. Liu, Z. Wang, J. Zhang, O. Ruzimuradov, K. Dai, J. Low, Adv. Mater. (2023) 2300643.
    [45]
    Z. Guo, F. Dai, H. Yin, M. Zhang, J. Xing, L. Wang, Colloid Interfac. Sci. 48 (2022) 100615.
    [46]
    H. Shen, G. Liu, Y. Zhao, D. Li, J. Jiang, J. Ding, B. Mao, H. Shen, K.-S. Kim, W. Shi, Fuel 259 (2020) 116311.
    [47]
    J.-h. Li, J. Ren, Y.-j. Hao, E.-p. Zhou, Y. Wang, X.-j. Wang, R. Su, Y. Liu, X.-h. Qi, F.-t. Li, J. Hazard. Mater. 401 (2021) 123262.
    [48]
    J.-h. Li, J. Ren, Y. Liu, H.-y. Mu, R.-h. Liu, J. Zhao, L.-j. Chen, F.-t. Li, Inorg. Chem.Front. 7 (2020) 2969-2978.
    [49]
    J. Chen, F. Xin, S. Qin, X. Yin, Chem. Eng. J. 230 (2013) 506-512.
    [50]
    Y. Zhang, Z. Peng, S. Guan, X. Fu, Appl. Catal. B 224 (2018) 1000-1008.
    [51]
    C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
    [52]
    S. Tang, Y. Xia, J. Fan, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 42 (2021) 743-752.
    [53]
    T. Di, B. Cheng, W. Ho, J. Yu, H. Tang, Appl. Surf. Sci. 470 (2019) 196-204.
    [54]
    B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A.A. Al-Ghamdi, S. Wageh, Appl. Catal. B 288 (2021) 119994.
    [55]
    R. He, S. Ou, Y. Liu, Y. Liu, D. Xu, Chin. J. Catal. 43 (2022) 370-378.
    [56]
    Z.-J. Chen, H. Guo, H.-Y. Liu, C.-G. Niu, D.-W. Huang, Y.-Y. Yang, C. Liang, L. Li, J.-C. Li, Chem. Eng. J. 438 (2022) 135471.
    [57]
    C. Xue, H. An, G. Shao, G. Yang, Chin. J. Catal. 42 (2021) 583-594.
    [58]
    Y. Yu, W. Yan, X. Wang, P. Li, W. Gao, H. Zou, S. Wu, K. Ding, Adv. Mater. 30 (2018) 1705060.
    [59]
    S. Yaseen, M.B. Tahir, A.G. Wattoo, Int. J. Energ. Res. 46 (2022) 634-666.
    [60]
    D. Zeng, T. Zhou, W.-J. Ong, M. Wu, X. Duan, W. Xu, Y. Chen, Y.-A. Zhu, D.-L. Peng, ACS Appl. Mater. Interfaces 11 (2019) 5651-5660.
    [61]
    Y.-l. Li, Q. Zhao, S.-j. Liu, G. Ma, Y. Liu, R.-h. Liu, H.-y. Mu, X. Li, F.-T. Li, Chem. Eng. J. (2022) 137399.
    [62]
    M. Wang, S. Shen, L. Li, Z. Tang, J. Yang, J. Mater. Sci. 52 (2017) 5155-5164.
    [63]
    J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 8 (2017) 1-12.
    [64]
    P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu, Y. Xie, Adv. Mater. 28 (2016) 7527-7532.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (59) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return