Volume 9 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Weigang Hu, Haoqi Liu, Yuankun Zhang, Jiawei Ji, Guangjun Li, Xiao Cai, Xu Liu, Wen Wu Xu, Weiping Ding, Yan Zhu. Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst. Green Energy&Environment, 2024, 9(7): 1079-1084. doi: 10.1016/j.gee.2023.12.004
Citation: Weigang Hu, Haoqi Liu, Yuankun Zhang, Jiawei Ji, Guangjun Li, Xiao Cai, Xu Liu, Wen Wu Xu, Weiping Ding, Yan Zhu. Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst. Green Energy&Environment, 2024, 9(7): 1079-1084. doi: 10.1016/j.gee.2023.12.004

Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst

doi: 10.1016/j.gee.2023.12.004
  • Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research, however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming. In this work, we report an atomically precise Cu13 cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu4 tetrahedra. The Cu13H10(SR)3(PR’3)7 (SR = 2,4-dichlorobenzenethiol, PR’3 = P(4-FC6H4)3) cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H2 production.

     

  • loading
  • [1]
    G. Chen, G. I. N. Waterhouse, R. Shi, J. Zhao, Z. Li, L. Z. Wu, C. H. Tung and T. Zhang, Angew. Chem. Int. Ed., 58(2019)17528-17551.
    [2]
    J. Fuller, Q. An, A. Fortunelli and W. A. Goddard, III, Acc. Chem. Res., 55(2022)1124-1134.
    [3]
    S. Luo, H. Lin, Q. Wang, X. Ren, D. Hernandez-Pinilla, T. Nagao, Y. Xie, G. Yang, S. Li, H. Song, M. Oshikiri and J. Ye, J. Am. Chem. Soc., 143(2021)12145-12153.
    [4]
    H. Nazeri, A. Najafi Chermahini, Z. Mohammadbagheri, M. Prato, Green Energy Environ., 8(2023)246-257.
    [5]
    W. Zhao, H. Li, H. Zhang, S. Yang and A. Riisager, Green Energy Environ., 8(2023)948-971.
    [6]
    C. Wan, Y. Liang, L. Zhou, J. Huang, J. Wang, F. Chen, X. Zhan and D. G. Cheng, Green Energy Environ.,(2022). https://doi.org/10.1016/j.gee.2022.06.007.
    [7]
    M. Sayed, J. Yu, G. Liu and M. Jaroniec, Chem. Rev., 122(2022)10484-10537.
    [8]
    L. Liu and A. Corma, Chem. Rev., 118(2018)4981-5079.
    [9]
    X. Du and R. Jin, ACS Nano, 13(2019)7383-7387.
    [10]
    R. Jin, G. Li, S. Sharma, Y. Li and X. Du, Chem. Rev., 121(2021)567-648.
    [11]
    M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz and R. Jin, J. Am. Chem. Soc., 130(2008)5883-5885.
    [12]
    T. Chen, H. Lin, Y. Cao, Q. Yao and J. Xie, Adv. Mater., 34(2022)2103918.
    [13]
    Y. Sun, W. Pei, M. Xie, S. Xu, S. Zhou, J. Zhao, K. Xiao and Y. Zhu, Chem. Sci., 11(2020)2440-2447.
    [14]
    X. Cai, G. Li, W. Hu and Y. Zhu, ACS Catal., 12(2022)10638-10653.
    [15]
    J. Q. Wang, R. L. He, W. D. Liu, Q. Y. Feng, Y. E. Zhang, C. Y. Liu, J. X. Ge and Q. M. Wang, J. Am. Chem. Soc., 145(2023)12255-12263.
    [16]
    X. Liu and D. Astruc, Coord. Chem. Rev., 359(2018)112-126.
    [17]
    S. G. Bratsch, J. Phys. Chem., 18(1989)1-21.
    [18]
    A. J. Edwards, R. S. Dhayal, P. K. Liao, J. H. Liao, M. H. Chiang, R. O. Piltz, S. Kahlal, J. Y. Saillard and C. W. Liu, Angew. Chem. Int. Ed., 53(2014)7214-7218.
    [19]
    P. Yuan, R. Chen, X. Zhang, F. Chen, J. Yan, C. Sun, D. Ou, J. Peng, S. Lin, Z. Tang, B. K. Teo, L. S. Zheng and N. Zheng, Angew. Chem. Int. Ed., 58(2019)835-839.
    [20]
    A. Ghosh, R. W. Huang, B. Alamer, E. Abou-Hamad, M. N. Hedhili, O. F. Mohammed and O. M. Bakr, ACS Mater. Lett., 1(2019)297-302.
    [21]
    R. P. Brocha Silalahi, Y. Jo, J. H. Liao, T. H. Chiu, E. Park, W. Choi, H. Liang, S. Kahlal, J. Y. Saillard, D. Lee and C. W. Liu, Angew. Chem. Int. Ed., 62(2023) e202301272.
    [22]
    R. P. Brocha Silalahi, K. K. Chakrahari, J. H. Liao, S. Kahlal, Y. C. Liu, M. H. Chiang, J. Y. Saillard and C. W. Liu, Chem. Asian. J., 13(2018)500-504.
    [23]
    S. Lee, M. S. Bootharaju, G. Deng, S. Malola, H. Hakkinen, N. Zheng and T. Hyeon, J. Am. Chem. Soc., 143(2021)12100-12107.
    [24]
    J. Yan, B. K. Teo and N. Zheng, Acc. Chem. Res., 51(2018)3084-3093.
    [25]
    C. Zeng and R. Jin, Chem. Asian J., 12(2017)1839-1850.
    [26]
    T. A. D. Nguyen, Z. R. Jones, B. R. Goldsmith, W. R. Buratto, G. Wu, S. L. Scott and T. W. Hayton, J. Am. Chem. Soc., 137(2015)13319-13324.
    [27]
    T. A. D. Nguyen, B. R. Goldsmith, H. T. Zaman, G. Wu, B. Peters and T. W. Hayton, Chem. Eur. J., 21(2015)5341-5344.
    [28]
    X. Lin, J. Tang, C. Zhu, L. Wang, Y. Yang, R. Wu, H. Fan, C. Liu and J. Huang, Chem. Sci., 14(2023)994-1002.
    [29]
    D. Li, J. Sun, R. Ma and J. Wei, J. Energy Chem., 71(2022)460-469.
    [30]
    W. Tong, A. West, K. Cheung, K.M. Yu and S. C. E. Tsang, ACS Catal., 3(2013)1231-1244.
    [31]
    K. Ploner, M. Watschinger, P. D. Kheyrollahi Nezhad, T. Gotsch, L. Schlicker, E.M. Kock, A. Gurlo, A. Gili, A. Doran, L. Zhang, N. Kowitsch, M. Armbruster, S. Vanicek, W. Wallisch, C. Thurner, B. Klotzer and S. Penner, J. Catal., 391(2020)497-512.
    [32]
    D. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs and M. Zhu, Nat. Catal., 5(2022)99-108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return