Volume 9 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Xu Li, Dongwei Zhang, Si Chen, Yingzhao Geng, Yong Liu, Libing Qian, Xi Chen, Jingjing Li, Pengfei Fang, Chunqing He. Outstanding proton conductivity over wide temperature and humidity ranges and enhanced mechanical, thermal stabilities for surface-modified MIL-101-Cr-NH2/Nafion composite membranes. Green Energy&Environment, 2024, 9(11): 1734-1746. doi: 10.1016/j.gee.2023.10.007
Citation: Xu Li, Dongwei Zhang, Si Chen, Yingzhao Geng, Yong Liu, Libing Qian, Xi Chen, Jingjing Li, Pengfei Fang, Chunqing He. Outstanding proton conductivity over wide temperature and humidity ranges and enhanced mechanical, thermal stabilities for surface-modified MIL-101-Cr-NH2/Nafion composite membranes. Green Energy&Environment, 2024, 9(11): 1734-1746. doi: 10.1016/j.gee.2023.10.007

Outstanding proton conductivity over wide temperature and humidity ranges and enhanced mechanical, thermal stabilities for surface-modified MIL-101-Cr-NH2/Nafion composite membranes

doi: 10.1016/j.gee.2023.10.007
  • High-performance proton exchange membranes are of great importance for fuel cells. Here, we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH2 (PCP-MCN), a kind of hybrid metal-organic framework, which exhibits a superior proton conductivity. PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes. Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated. Significant enhancement in proton conduction for PCP-MCN around 55 ℃ is interestingly found due to the thermal motion of the PCP molecular chains. Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains, i.e., the formation of substantial acid-base pairs (-SO3-···+H-NH-), which further improves compatibility between additive and Nafion matrix. At the same humidity and temperature condition, the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion. Proton conductivity (σ) over wide ranges of humidities (30 - 100% RH at 25 ℃) and temperatures (30 - 98 ℃ at 100% RH) for prepared membranes is measured. The σ in PCP-MCN/Nafion composite membranes is remarkably enhanced, i.e. 0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98 ℃ and 100% RH, because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation-deprotonation processes. The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN. In particular, when 3 wt.% PCP-MCN was added to Nafion, the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480, 1.098 W/cm2 under 40% RH, 100% RH at 60 ℃, respectively, guaranteeing it to be a promising proton exchange membrane.

     

  • loading
  • [1]
    P. Kallem, N. Yanar, H. Choi, ACS Sustainable Chem. Eng. 7 (2018) 1808-1825.
    [2]
    O.Z. Sharaf, M.F. Orhan, Renewable and Sustainable Energy Reviews 32 (2014) 810-853.
    [3]
    R. Haider, Y. Wen, Z.F. Ma, D.P. Wilkinson, L. Zhang, X. Yuan, S. Song, J. Zhang, Chem. Soc. Rev. 50 (2021) 1138-1187.
    [4]
    G. Xu, X. Dong, B. Xue, J. Huang, J. Wu, W. Cai, Energies 16 (2023).
    [5]
    M. Vinothkannan, R. Kannan, A.R. Kim, G.G. Kumar, K.S. Nahm, D.J. Yoo, Colloid Polym. Sci. 294 (2016) 1197-1207.
    [6]
    C. Yin, J. Li, Y. Zhou, H. Zhang, P. Fang, C. He, J. Phys. Chem. C 122 (2018) 9710-9717.
    [7]
    G. Xu, S. Xue, Z. Wei, J. Li, K. Qu, Y. Li, W. Cai, Int. J. Hydrogen Energy 46 (2021) 4301-4308.
    [8]
    L. Wang, Y. Wang, Z. Li, T. Li, R. Zhang, J. Li, B. Liu, Z. Lv, W. Cai, S. Sun, W. Hu, Y. Lu, G. Zhu, Adv. Mater. 35 (2023).
    [9]
    A.M. Baker, L. Wang, W.B. Johnson, A.K. Prasad, S.G. Advani, J. Phys. Chem. C 118 (2014) 26796-26802.
    [10]
    K. Oh, O. Kwon, B. Son, D.H. Lee, S. Shanmugam, J. Membr. Sci. 583 (2019) 103-109.
    [11]
    A.I.a.K. Swaghatha, L. Cindrella, Polym. J. 53 (2021) 679-693.
    [12]
    M.M. Hasani-Sadrabadi, F.S. Majedi, G. Coullerez, E. Dashtimoghadam, J.J. Vandersarl, A. Bertsch, H. Moaddel, K.I. Jacob, P. Renaud, ACS Appl. Mater. Interfaces 6 (2014) 7099-7107.
    [13]
    M. Vinothkannan, R. Hariprasad, S. Ramakrishnan, A.R. Kim, D.J. Yoo, ACS Sustainable Chem. Eng. 7 (2019) 12847-12857.
    [14]
    L. Liu, X. Li, Z. Liu, S. Zhang, L. Qian, Z. Chen, J. Li, P. Fang, C. He, J. Membr. Sci. 653 (2022) 120516.
    [15]
    W. Zhengbang, H. Tang, P. Mu, J. Membr. Sci. 369 (2011) 250-257.
    [16]
    M. Vinothkannan, S. Ramakrishnan, A.R. Kim, H.K. Lee, D.J. Yoo, ACS Appl. Mater. Interfaces 12 (2020) 5704-5716.
    [17]
    P. Ramaswamy, N.E. Wong, G.K. Shimizu, Chem. Soc. Rev. 43 (2014) 5913-5932.
    [18]
    H.A. Patel, N. Mansor, S. Gadipelli, D.J. Brett, Z. Guo, ACS Appl. Mater. Interfaces 8 (2016) 30687-30691.
    [19]
    C. Duan, Y. Yu, J. Xiao, Y. Li, P. Yang, F. Hu, H. Xi, Green Energy & Environment 6 (2021) 33-49.
    [20]
    Y. Yin, Z. Li, X. Yang, L. Cao, C. Wang, B. Zhang, H. Wu, Z. Jiang, J. Power Sources 332 (2016) 265-273.
    [21]
    P. Li, N. Zhang, X. Li, S. Tang, Green Energy & Environment 8 (2023) 915-926.
    [22]
    Y. Wang, H. Gao, W. Wu, Z. Zhou, Z. Yang, J. Wang, Y. Zou, Nano Res. 15 (2021) 3195-3203.
    [23]
    H. Wang, Y. Zhao, Z. Shao, W. Xu, Q. Wu, X. Ding, H. Hou, ACS Appl. Mater. Interfaces 13 (2021) 7485-7497.
    [24]
    L. Cao, Q. Sun, Y. Gao, L. Liu, H. Shi, Electrochim. Acta 158 (2015) 24-34.
    [25]
    L. Ge, X. Liu, G. Wang, B. Wu, L. Wu, E. Bakangura, T. Xu, J. Membr. Sci. 475 (2015) 273-280.
    [26]
    L. Wu, C. Huang, J.J. Woo, D. Wu, S.H. Yun, S.J. Seo, T. Xu, S.H. Moon, J. Phys. Chem. B 113 (2009) 12265-12270.
    [27]
    Z. Rao, B. Tang, P. Wu, ACS Appl. Mater. Interfaces 9 (2017) 22597-22603.
    [28]
    Z. Li, G. He, Y. Zhao, Y. Cao, H. Wu, Y. Li, Z. Jiang, J. Power Sources 262 (2014) 372-379.
    [29]
    C. Ma, J.J. Urban, Adv. Funct. Mater. 29 (2019).
    [30]
    C. Li, J. Liu, K. Zhang, S. Zhang, Y. Lee, T. Li, Angew. Chem. 133 (2021) 14257-14264.
    [31]
    Z. Wang, J. Ren, Y. Sun, L. Wang, Y. Fan, J. Zheng, H. Qian, S. Li, J. Xu, S. Zhang, J. Membr. Sci. 645 (2022).
    [32]
    L. Ding, H. Zou, J. Lu, H. Liu, S. Wang, H. Yan, Y. Li, Inorg. Chem. 61 (2022) 16185-16196.
    [33]
    C. Yin, J. Li, Y. Zhou, H. Zhang, P. Fang, C. He, ACS Appl. Mater. Interfaces 10 (2018) 14026-14035.
    [34]
    L. Zanchet, L.G. Da Trindade, W. Bariviera, K.M. Nobre Borba, R.D.M. Santos, V.A. Paganin, C.P. De Oliveira, E.A. Ticianelli, E.M.A. Martini, M.O. De Souza, J. Mater. Sci. 55 (2020) 6928-6941.
    [35]
    N. Zhang, C. Zhao, W. Ma, S. Wang, B. Wang, G. Zhang, X. Li, H. Na, Polym. Chem. 5 (2014) 4939-4947.
    [36]
    N. Zhang, B. Wang, C. Zhao, S. Wang, Y. Zhang, F. Bu, Y. Cui, X. Li, H. Na, J. Mater. Chem. A 2 (2014) 13996-14003.
    [37]
    L. Liu, C. Wang, Z. He, D. Pan, B. Dong, S. Vupputuri, Z. Guo, J. Power Sources 506 (2021) 230164.
    [38]
    Y. Huo, Q. Li, Z. Rui, R. Ding, J. Liu, J. Li, J. Liu, J. Membr. Sci. 635 (2021).
    [39]
    J. Stark, Cem. Concr. Res. 41 (2011) 666-678.
    [40]
    Y. Ma, C. Shi, L. Lei, S. Sha, B. Zhou, Y. Liu, Y. Xiao, Constr. Build. Mater. 255 (2020).
    [41]
    F. Dalas, A. Nonat, S. Pourchet, M. Mosquet, D. Rinaldi, S. Sabio, Cem. Concr. Res. 67 (2015) 21-30.
    [42]
    X. Zhao, M. Zheng, X. Gao, Z. Gao, H. Huang, J. Mater. Sci. 55 (2020) 14751-14760.
    [43]
    J. Dryzek, J. Kansy, Nucl. Instrum. Methods Phys. Res., Sect. A 380 (1996) 576-581.
    [44]
    C. Yin, L. Wang, J. Li, Y. Zhou, H. Zhang, P. Fang, C. He, Phys. Chem. Chem. Phys. 19 (2017) 15953-15961.
    [45]
    L. Qian, C. Yin, L. Liu, X. Zhang, J. Li, Z. Liu, H. Zhang, P. Fang, C. He, J. Mater. Sci. 56 (2021) 6764-6779.
    [46]
    X. Li, L. Qian, L. Liu, Z. Liu, H. Zhang, L. Yang, D. Zhang, Z. Chen, P. Fang, C. He, J. Power Sources 564 (2023).
    [47]
    D. He, G. Liu, A. Wang, W. Ji, J. Wu, H. Tang, W. Lin, T. Zhang, H. Zhang, J. Membr. Sci. 650 (2022) 120442.
    [48]
    T.K. Vo, W.-S. Kim, J. Kim, Korean J. Chem. Eng. 37 (2020) 1206-1211.
    [49]
    Z. Li, G. He, B. Zhang, Y. Cao, H. Wu, Z. Jiang, Z. Tiantian, ACS Appl. Mater. Interfaces 6 (2014) 9799-9807.
    [50]
    X. Qiu, X. Peng, C. Yi, Y. Deng, J. Dispers. Sci. Technol. 32 (2011) 203-212.
    [51]
    X.Y. Peng, C.H. Yi, Y.H. Deng, X.Q. Qiu, Int. J. Polym. Mater. 60 (2011) 923-938.
    [52]
    Y. Lin, C. Kong, L. Chen, RSC Adv. 2 (2012).
    [53]
    G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 309 (2005) 2040-2042.
    [54]
    J. Kansy, Nucl. Instrum. Methods Phys. Res., Sect. A 374 (1996) 235-244.
    [55]
    S.J. Tao, J. Chem. Phys. 56 (1972) 5499-5510.
    [56]
    X. Zhang, B. Xiong, J. Li, L. Qian, L. Liu, Z. Liu, P. Fang, C. He, ACS Appl. Mater. Interfaces 11 (2019) 31441-31451.
    [57]
    N. Agmon, Chem. Phys. Lett. 244 (1995) 456-462.
    [58]
    K.-D. Kreuer, A. Rabenau, W. Weppner, Angew. Chem. Int. Ed. 21 (1982) 208-209.
    [59]
    S. Kim, K.W. Dawson, B.S. Gelfand, J.M. Taylor, G.K. Shimizu, J. Am. Chem. Soc. 135 (2013) 963-966.
    [60]
    F.-M. Zhang, L.-Z. Dong, J.-S. Qin, W. Guan, J. Liu, S.-L. Li, M. Lu, Y.-Q. Lan, Z.-M. Su, H.-C. Zhou, J. Am. Chem. Soc. 139 (2017) 6183-6189.
    [61]
    S. Sy, G. Jiang, J. Zhang, H. Zarrin, T. Cumberland, S. Abureden, E. Bell, J. Gostick, A. Yu, Z. Chen, ACS Nano 14 (2020) 14947-14959.
    [62]
    F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J.-R. Li, B. Chen, Nature Energy 2 (2017) 877-883.
    [63]
    V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova, V.P. Fedin, J. Am. Chem. Soc. 134 (2012) 15640-15643.
    [64]
    D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa, J. Am. Chem. Soc. 134 (2012) 12780-12785.
    [65]
    H.B. Luo, Q. Ren, P. Wang, J. Zhang, L. Wang, X.M. Ren, ACS Appl. Mater. Interfaces 11 (2019) 9164-9171.
    [66]
    H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-Y. Kang, J.-N. Lin, F.-C. Chang, Int. J. Hydrogen Energy 38 (2013) 13792-13801.
    [67]
    D. Kosseoglou, R. Kokkinofta, D. Sazou, J. Solid State Electrochem. 15 (2010) 2619-2631.
    [68]
    H. Beydaghi, M. Javanbakht, E. Kowsari, Ind. Eng. Chem. Res. 53 (2014) 16621-16632.
    [69]
    Y. Duan, Y. Pang, B. Liu, L. Wu, X. Hu, Q. Li, C. Zhao, ACS Sustainable Chem. Eng. 11 (2023) 5270-5283.
    [70]
    Y. Yin, T. Xu, G. He, Z. Jiang, H. Wu, J. Power Sources 276 (2015) 271-278.
    [71]
    W. Wu, Y. Li, J. Liu, J. Wang, Y. He, K. Davey, S.Z. Qiao, Adv. Mater. 30 (2018) e1707516.
    [72]
    W. Wu, Z. Zhou, Y. Wang, Y. Zhang, Y. Wang, J. Wang, Y. Zou, Nano Res. 15 (2022) 4124-4131.
    [73]
    H. Dou, M. Xu, B. Wang, Z. Zhang, D. Luo, B. Shi, G. Wen, M. Mousavi, A. Yu, Z. Bai, Z. Jiang, Z. Chen, Angew. Chem. Int. Ed. 60 (2021) 5864-5870.
    [74]
    J. Wang, Y. He, L. Zhao, Y. Li, S. Cao, B. Zhang, H. Zhang, J. Membr. Sci. 482 (2015) 1-12.
    [75]
    J. Wang, Y. Liu, J. Dang, G. Zhou, Y. Wang, Y. Zhang, L. Qu, W. Wu, J. Membr. Sci. 602 (2020).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (135) PDF downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return