Volume 9 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Yajie Bai, Zhenyuan Fang, Yong Lei, Lijing Liu, Huaiquan Zhao, Hongye Bai, Weiqiang Fan, Weidong Shi. FCF-LDH/BiVO4 with synergistic effect of physical enrichment and chemical adsorption for efficient reduction of nitrate. Green Energy&Environment, 2024, 9(7): 1112-1121. doi: 10.1016/j.gee.2023.05.011
Citation: Yajie Bai, Zhenyuan Fang, Yong Lei, Lijing Liu, Huaiquan Zhao, Hongye Bai, Weiqiang Fan, Weidong Shi. FCF-LDH/BiVO4 with synergistic effect of physical enrichment and chemical adsorption for efficient reduction of nitrate. Green Energy&Environment, 2024, 9(7): 1112-1121. doi: 10.1016/j.gee.2023.05.011

FCF-LDH/BiVO4 with synergistic effect of physical enrichment and chemical adsorption for efficient reduction of nitrate

doi: 10.1016/j.gee.2023.05.011
  • Photoelectrochemical NO3- reduction (PEC NITRR) not only provides a promising solution for promoting the global nitrogen cycle, but also converts NO3- to the important chemicals (NH3). However, it is still a great challenge to prepare catalysts with excellent NO3- adsorption/activation capacity to achieve high NITRR. Herein, we designed a novel Fe2+Cu2+Fe3+LDH/BiVO4 (FCF-LDH/BVO) catalyst with synergistic effect of chemical adsorption and physical enrichment. Fe2+ in FCF-LDH/BVO provides the rich Lewis acid sites for the adsorption of NO3-, and the appropriate layer spacing of FCF-LDH further promotes the physical enrichment of NO3- in its interior, thus realizing the effective contact between NO3- and active sites (Fe2+). FCF-LDH/BVO showed excellent NH3 production performance (FENH3= 66.1%, rNH3 = 13.8 μg h-1 cm-2) and selectivity (FENO2- = 2.5%, rNO2- = 4.9 μg h-1 cm-2) in 0.5 mol L-1 Na2SO4 electrolyte. In addition, FCF-LDH/BVO maintains the desirable PEC stability for six cycle experiments, showing great potential for practical application. The 14NO3- and 15NO3- isotope test provides strong evidence for further verification of the origin of N in the generated NH3. This LDH catalyst has a great potential in PEC removal of NO3- from groundwater.

     

  • loading
  • [1]
    H. Liu, J. Li, F. Du, L. Yang, S. Huang, J. Gao, C. Li, C. Guo, Green Energy Environ.(2022)10.1016/j.gee.2022.03.00.
    [2]
    Q. Chen, D. Wang, C. Gao, B. Wang, S. Niu, G. Zhao, Y. Peng, J. Li, C. Lu, J. Crittenden, Green Energy Environ. 8(2023)173-182.
    [3]
    F. Li, W. Zhang, P. Zhang, A. Gong, K. Li, Green Energy Environ.(2022). 22(2022)5600-5606.
    [4]
    H. Wang, D. Zhao, C. Liu, X. Fan, Z. Li, Y. Luo, D. Zheng, S. Sun, J. Chen, J. Zhang, Y. Liu, S. Gao, F. Gong, X. Sun, J. Mater. Chem. A 10(2022)24462-24467.
    [5]
    Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, I. Shakir, P. O. Agboola, Q. Kong, Q. Wang, D. Ma, X. Sun, Small 18(2022)2106961.
    [6]
    Y. Luo, K. Chen, P. Shen, X. Li, X. Li, Y. Li, K. Chu, J. Colloid Interf. Sci. 629(2023)950-957.
    [7]
    Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang, Y. Ren, L. Yue, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Y. Luo, Q. Kong, X. Sun, Mater. Today Phys. 23(2022)100619.
    [8]
    G. Wang, P. Shen, Y. Luo, X. Li, X. Lia, K. Chu, Dalton Trans. 51(2022)9206-9212.
    [9]
    X. Xu, L. Hu, Z. Li, L. Xie, S. Sun, L. Zhang, J. Li, Y. Luo, X. Yan, M. S. Hamdy, Q. Kong, X. Sun, Q. Liu, Sustain. Energy Fuels 6(2022)4130-4136.
    [10]
    P. Shen, G. Wang, K. Chen, J. Kang, D. Ma, K. Chu, J. Colloid Interf. Sci. 629(2023)563-570.
    [11]
    Z. Deng, C. Ma, X. Fan, Z. Li, Y. Luo, S. Sun, D. Zheng, Q. Liu, J. Du, Q. Lu, B. Zheng, X. Sun, Mater. Today Phys. 28(2022)100854.
    [12]
    Y. Zhao, Y. Liu, Z. Zhang, Z. Mo, C. Wang, S. Gao, Nano Energy 97(2022)107124.
    [13]
    G. Wang, P. Shen, K. Chen, Y. Guo, X. Zhao, K. Chu, ACS Appl. Mater. Interface 14(2022)46595-46602.
    [14]
    H. Kim, J. Kim, E. Ra, H. Zhang, Y. Jang, J. Lee, Angew. Chem. Int. Ed. 61(2022) e202204117.
    [15]
    J. Schachner, F. Wiedemaier, N. Zwettler, L. Peschel, A. Boese, F. Belaj, N. Mösch-Zanetti, J. Catal.397(2021), 108-115.
    [16]
    P. Langevelde, I. Katsounaros, M. Koper, Joule 5(2021)290-294.
    [17]
    Y. Wang, J. Qu, H. Liu, C. Hu, Catal. Today 126(2007)476-482.
    [18]
    S. Bae, K. Stewart, A. Gewirth, J. Am. Chem. Soc. 129(2007)10171-10180.
    [19]
    J. Li, M. Li, Q. Song, S. Wang, X. Cui, F. Liu, X. Liu, J. Hazard. Mater. 394(2020)122554.
    [20]
    S. Nayak, L. Mohapatra, K. Parida, J. Mater. Chem. A 3(2015)18622-18635.
    [21]
    S. Nayak, K. M. Parida, Sci. Rep. 9(2019)2458-2481.
    [22]
    S. Nayak, K. M. Parida, ACS Omega 3(2018)7324-7343.
    [23]
    S. Nayak, K. M. Parida, Inorg. Chem. Front. 7(2020)3805-3837.
    [24]
    S. Nayak, K. M. Parida, Catal. 11(2021)1072-1087.
    [25]
    S. Nayak, K. M. Parida, J. Hazard. Chem. Asian J. 16(2021)2211-2248.
    [26]
    H. Li, H. Tong, H. Gao, Y. Wang, J. He, Z. Wang, X. Wang, Z. Chai, Chem. Asian. J.(2023) e202300177.
    [27]
    I. Ahmed, M. Gasser, Appl. Surf. Sci. 259(2012)650-656.
    [28]
    A. Inamdar, H. Chavan, B. Hou, S. Cha, H. Kim, H. Im, Small 16(2020)1905884.
    [29]
    L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen, L. Zhang, Angew. Chem. Int. Ed. 59(2020)10888.
    [30]
    J. Ding, L. Zhong, X. Wang, L. Chai, Y. Wang, M. Jiang, T. Li, Y. Hu, J. Qian, S. Huang, Sens. Actuators B Chem. 306(2020)127551.
    [31]
    L. Zhang, G. Fan, W. Xu, M. Yu, L. Wang, Z. Yan, F. Cheng, Chem. Commun. 56(2020)11957.
    [32]
    Z. Wu, M. Karamad, X. Yong, Q. Huang, D. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F. Chen, J. Kim, Y. Xia, K. Heck, Y. Hu, M. Wong, Q. Li, I. Gates, S. Siahrostami, H. Wang, Nat. commun. 12(2021)1-10.
    [33]
    W. Li, C. Xiao, Y. Zhao, Q. Zhao, R. Fan, J. Xue, Catal. Lett. 146(2016)2585-2595.
    [34]
    Y. Kong, H. Kong, C. Lv, G. Chen, Adv. Mater. Interfaces 9(2022)2102242.
    [35]
    Y. J. Bai, J. M. Lu, H. Y. Bai, Z. Y. Fang, F. G. Wang, Y. Liu, D. T. Sun, B. F. Luo, W. Q. Fan, W. D. Shi, Chem. Eng. J. 414(2021)128773.
    [36]
    R. Bastian, R. Weberling, F. Palilla, Anal. Chem. 29(1957)1795-1797.
    [37]
    Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 59(2020)350-5354.
    [38]
    X. Cheng, J. He, H. Ji, H. Zhang, Q. Cao, W. Sun, C. Yan, J. Lu, Adv. Mater. 34(2022)2205767.
    [39]
    R. Hodgetts, A. Kiryutin, P. Nichols, H. Du, J. Bakker, D. Macfarlane, A. Simonov, ACS Energy Lett. 5(2020)736-741.
    [40]
    L. Zhang, F. Li, D. Evans, X. Duan, Ind. Eng. Chem. Res. 49(2010)5959-5968.
    [41]
    P. Gholami, L. Dinpazhoh, A. Khataee, A. Hassani, A. Bhatnagar, J. Hazard Mater. 381(2020), 120742.
    [42]
    S. Said, M. Elhossieny, M. Riad, S. Mikhail, Mol. Catal. 445(2018)213-222.
    [43]
    F. Song, X. Hu, Nat. Commun. 5(2014)4477.
    [44]
    Y. Zhang, L. Shi, Z. Geng, T. Ren, Z. Yang, Sci. Rep. 9(2019)19090.
    [45]
    T. Palaniselvam, L. Shi, G. Mettela, D. H. Anjum, R. Li, K. P. Katuri, P. E. Saikaly, P. Wang, Adv. Mater. Interfaces 4(2017)1700540.
    [46]
    F. Li, Dennis Y. Leung, Chem. Eng. Sci. 211(2020)115266.
    [47]
    S. Nayak, K.M. Parida, Int. J. Hydrogen Energ. 41(2016)21166e21180.
    [48]
    S. Nayak, A. C. Pradhan, K. M. Parida, Inorg. Chem. 57(2018)8646-8661.
    [49]
    S. Nayak, K. K. Das, K. Parida, J. Colloid Interf. Sci. 634(2023)121-137.
    [50]
    S. Nayak, G. Swain, K. Parida, ACS Appl. Mater. Interfaces 11(2019)20923-20942.
    [51]
    Z. Huang, P. Wu, J. Liu, S. Yang, M. Chen, Y. Li, W. Niu, Q. Ye, Chem. Eng. J. 395(2020)124936.
    [52]
    L. Zhong, X. Wang, Y. Guo, J. Ding, Q. Huang, T.-T. Li, Y. Hu, J. Qian, S. Huang, ACS Appl. Mater. Interfaces 13(2021)55454.
    [53]
    K. Zhu, J. Chen, W. Wang, J. Liao, J. Dong, M. O. L. Chee, N. Wang, P. Dong, P. M. Ajayan, S. Gao, J. Shen, M. Ye, Adv. Funct. Mater. 30(2020)2003556.
    [54]
    B. Chen, R. Xu, R. Zhang, N. Liu, Environ. Sci. Technol. 48(2014)13909.
    [55]
    S. Nayak, K. Parida, Sci. Rep. 12(2022)9264-9287.
    [56]
    Z. Fang, Y. Bai, L. Li, D. Li, Y. Huang, R. Chen, W. Fan, W. Shi, Nano Energy 75(2020)104865.
    [57]
    S. Jiao, Y. Zhao, C. Li, B. Wang, Y. Qu, Green Energy Environ. 5(2019)66-74.
    [58]
    E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, M. E. Zappi, Cleaner Engineering and Technology 1(2020)100032.
    [59]
    L. Lin, Z. Li, X. Song, Y. Jiao, C. Zhou, Mater. Lett. 218(2018)201-204.
    [60]
    H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Ruscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. Cuenya, J. Luo, Angew. Chem. Int. Ed. 61(2022) e202202556.
    [61]
    H. Liu, J. Park, Y. Chen, Y. Qiu, Y. Cheng, K. Srivastava, S. Gu, B. H. Shanks, L. T. Roling, W. Li, ACS Catal. 11(2021)8431-8442.
    [62]
    Y. Xu, K. Ren, T. Ren, M. Wang, Z. Wang, X. Li, L. Wang, H. Wang, Appl. Catal. B Environ. 306(2022)121094.
    [63]
    R. Zhang, Y. Guo, S. Zhang, D. Chen, Y. Zhao, Z. Huang, L. Ma, P. Li, Q. Yang, G. Liang, C. Zhi, Adv. Energy Mater. 12(2022)2103872.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return