Volume 9 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Xiaoying Guo, Yan Qiao, Zonglin Yi, Christian Marcus Pedersen, Yingxiong Wang, Xiaodong Tian, Peide Han. Furfural residues derived nitrogen-sulfur co-doped sheet-like carbon: An excellent electrode for dual carbon lithium-ion capacitors. Green Energy&Environment, 2024, 9(9): 1427-1439. doi: 10.1016/j.gee.2023.05.007
Citation: Xiaoying Guo, Yan Qiao, Zonglin Yi, Christian Marcus Pedersen, Yingxiong Wang, Xiaodong Tian, Peide Han. Furfural residues derived nitrogen-sulfur co-doped sheet-like carbon: An excellent electrode for dual carbon lithium-ion capacitors. Green Energy&Environment, 2024, 9(9): 1427-1439. doi: 10.1016/j.gee.2023.05.007

Furfural residues derived nitrogen-sulfur co-doped sheet-like carbon: An excellent electrode for dual carbon lithium-ion capacitors

doi: 10.1016/j.gee.2023.05.007
  • The state-of-the-art lithium-ion capacitors (LICs), consisting of high-capacity battery-type anode and high-rate capacitor-type cathode, can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries, respectively. However, the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation. Tremendous efforts have been devoted to solving the abovementioned issue. One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode, assembling dual-carbon LIC. In this contribution, one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon, while activated carbon was obtained involving activation. Ammonium persulfate was used as expanding and doping agent simultaneously. While furfural residues (FR) were served as carbon precursor. The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC) show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB). To be specific, 374.2 mAh g-1 and 123.1 mAh g-1 can be achieved at 0.1 A g-1 and 5 A g-1 when FRNS-HC was tested as anode. When combined with a highly porous carbon cathode (SBET = 2961 m2 g-1) synthesized from the same precursor, the LIC showed high specific energy of 147.67 Wh kg-1 at approximately 199.93 W kg-1, and outstanding cycling life with negligible capacitance fading over 1000 cycles. This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.

     

  • loading
  • [1]
    P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, S.-J. Kim, Chem. Eng. J. 387(2020)123886. DOI: 10.1016/j.cej.2019.123886.
    [2]
    L. Ye, C. Wang, L. Cao, H. Xiao, J. Zhang, B. Zhang, X. Ou, Green Energy Environ. 6(2021)725-733. DOI: 10.1016/j.gee.2020.06.017.
    [3]
    Y.J. Yu, Xiaobo; Fan, Hongjin, Green Energy Environ. 3(2018). DOI: 10.1016/j.gee.2018.01.002.
    [4]
    W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Adv. Sci. 4(2017)1600539. DOI: 10.1002/advs.201600539.
    [5]
    W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 5(2019) eaav7412. DOI: 10.1126/sciadv.aav7412.
    [6]
    A. Gonzalez-Gil, R. Palacin, P. Batty, Energy Convers. Manage. 75(2013)374-388. DOI: 10.1016/j.enconman.2013.06.039.
    [7]
    X. Sun, X. Zhang, W. Liu, K. Wang, C. Li, Z. Li, Y. Ma, Electrochim. Acta 235(2017)158-166. DOI: 10.1016/j.electacta.2017.03.110.
    [8]
    X. Wang, L. Liu, Z. Niu, Mater. Chem. Front. 3(2019)1265-1279. DOI: 10.1039/c9qm00062c.
    [9]
    G. Li, Z. Yang, Z. Yin, H. Guo, Z. Wang, G. Yan, Y. Liu, L. Li, J. Wang, J. Mater. Chem. A 7(2019)15541-15563. DOI: 10.1039/c9ta01246j.
    [10]
    V. Aravindan, J. Gnanaraj, Y.-S. Lee, S. Madhavi, Chem. Rev. 114(2014)11619-11635. DOI: 10.1021/cr5000915.
    [11]
    C. Han, H. Li, R. Shi, L. Xu, J. Li, F. Kang, B. Li, Energy Environ. Mater. 1(2018)75-87. DOI: 10.1002/eem2.12009.
    [12]
    W. Ahn, D.U. Lee, G. Li, K. Feng, X. Wang, A. Yu, G. Lui, Z. Chen, ACS Appl. Mater. Interfaces 8(2016)25297-25305. DOI: 10.1021/acsami.6b08298.
    [13]
    H. Du, H. Yang, C. Huang, J. He, H. Liu, Y. Li, Nano Energy 22(2016)615-622. DOI: 10.1016/j.nanoen.2016.02.052.
    [14]
    S.R. Sivakkumar, A.G. Pandolfo, J. Appl. Electrochem. 44(2014)105-113. DOI: 10.1007/s10800-013-0606-6.
    [15]
    J. Wu, Y. Lin, X. Huang, Mater. Res. Bull. 134(2021). DOI: 10.1016/j.materresbull.2020.111062.
    [16]
    M. Yang, Z. Zhou, Adv. Sci 4(2017)1600408. DOI: 10.1002/advs.201600408.
    [17]
    M. Kotal, J. Kim, K.J. Kim, I.-K. Oh, Adv. Mater. 28(2016)1610-1615. DOI: 10.1002/adma.201505243.
    [18]
    H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Y. Li, Adv. Energy Mater. 9(2019)1803665. DOI: 10.1002/aenm.201803665.
    [19]
    G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 47(2018)547-555. DOI: 10.1016/j.nanoen.2018.03.016.
    [20]
    Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, Adv. Energy Mater. 7(2017)1701336. DOI: 10.1002/aenm.201701336.
    [21]
    Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Adv. Funct. Mater. 26(2016)111-119. DOI: 10.1002/adfm.201504004.
    [22]
    Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen, K. Zhang, W. Guo, X. Wang, J. Tu, Adv. Mater. 30(2018). DOI: 10.1002/adma.201805165.
    [23]
    T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350(2015)1508-1513. DOI: 10.1126/science.aab3798.
    [24]
    Q. Li, Y.-N. Zhang, S. Feng, D. Liu, G. Wang, Q. Tan, S. Jiang, J. Yuan, Int. J. Energy Res. 45(2021)7082-7092. DOI: 10.1002/er.6294.
    [25]
    P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, Adv. Energy Mater. 8(2018)1702434. DOI: 10.1002/aenm.201702434.
    [26]
    Y. Wang, Y. Wang, J. Liu, L. Pan, W. Tian, M. Wu, J. Qiu, Carbon 122(2017)344-351. DOI: 10.1016/j.carbon.2017.06.086.
    [27]
    X. Guo, X. Zhang, Y. Wang, X. Tian, Y. Qiao, Green Energy Environ. 7(2022)1270-1280. DOI: 10.1016/j.gee.2021.01.021.
    [28]
    S. Natarajan, Y.-S. Lee, V. Aravindan, Chem-Asian J. 14(2019)936-951. DOI: 10.1002/asia.201900030.
    [29]
    A.K. Nanjundan, R.R. Gaddam, A.H. Farokh Niaei, P.K. Annamalai, D.P. Dubal, D.J. Martin, Y. Yamauchi, D.J. Searles, X.S. Zhao, Batteries Supercaps 3(2020)953-960. DOI: 10.1002/batt.202000116.
    [30]
    D.P. Dubal, P. Gomez-Romero, Mater. Today Energy 8(2018)109-117. DOI: 10.1016/j.mtener.2018.03.005.
    [31]
    Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Angew. Chem. Int. Ed. 52(2013)7800-7804. DOI: 10.1002/anie.201301114.
    [32]
    X. Song, X. Ma, G. Ning, D. Gao, Z. Yu, Z. Xiao, Appl. Surf. Sci. 442(2018)467-475. DOI: 10.1016/j.apsusc.2018.01.315.
    [33]
    T. Wang, P. Zhai, D. Legut, L. Wang, X. Liu, B. Li, C. Dong, Y. Fan, Y. Gong, Q. Zhang, Adv. Energy Mater. 9(2019)1804000. DOI: 10.1002/aenm.201804000.
    [34]
    D. Luo, J. Xu, Q. Guo, L. Fang, X. Zhu, Q. Xia, H. Xia, Adv. Funct. Mater. 28(2018)1805371. DOI: 10.1002/adfm.201805371.
    [35]
    Y. Ma, Q. Guo, M. Yang, Y. Wang, T. Chen, Q. Chen, X. Zhu, Q. Xia, S. Li, H. Xia, Energy Storage Mater. 13(2018)134-141. DOI: 10.1016/j.ensm.2018.01.005.
    [36]
    G.Y. Zhao, C. Chen, D.F. Yu, L. Sun, C.H. Yang, H. Zhang, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 47(2018)547-555. DOI: 10.1016/j.nanoen.2018.03.016.
    [37]
    X.J. Liu, Y.C. Hao, J. Shu, H.M.K. Sari, L.X. Lin, H.R. Kou, J.W. Li, W. Liu, B. Yan, D.J. Li, J.J. Zhang, X.F. Li, Nano Energy 57(2019)414-423. DOI: 10.1016/j.nanoen.2018.12.024.
    [38]
    J. Ruan, T. Yuan, Y. Pang, S. Luo, C. Peng, J. Yang, S. Zheng, Carbon 126(2018)9-16. DOI: 10.1016/j.carbon.2017.09.099.
    [39]
    H. Li, J. Chen, B. Yang, K. Wang, X. Zhang, T. Zhang, L. Zhang, W. Liu, X. Yan, Electrochim. Acta 299(2019)163-172. DOI: 10.1016/j.electacta.2018.12.172.
    [40]
    T. Le, H. Tian, J. Cheng, Z.-H. Huang, F. Kang, Y. Yang, Carbon 138(2018)325-336. DOI: 10.1016/j.carbon.2018.06.015.
    [41]
    X. Yu, C. Zhan, R. Lv, Y. Bai, Y. Lin, Z.-H. Huang, W. Shen, X. Qiu, F. Kang, Nano Energy 15(2015)43-53. DOI: 10.1016/j.nanoen.2015.03.001.
    [42]
    J.-G. Wang, H. Liu, X. Zhang, M. Shao, B. Wei, J. Mater. Chem. A 6(2018)17653-17661. DOI: 10.1039/c8ta07573e.
    [43]
    J. Zhang, W. Zhang, M. Han, J. Pang, Y. Xiang, G. Cao, Y. Yang, Micropor. Mesopor Mat. 270(2018)204-210. DOI: 10.1016/j.micromeso.2018.05.020.
    [44]
    H.D. Pham, K. Mahale, T.M.L. Hoang, S.G. Mundree, P. Gomez-Romero, D.P. Dubal, ACS Appl. Mater. Interfaces 12(2020)48518-48525. DOI: 10.1021/acsami.0c12379.
    [45]
    H. Kim, K.-Y. Park, M.-Y. Cho, M.-H. Kim, J. Hong, S.-K. Jung, K.C. Roh, K. Kang, Chemelectrochem 1(2014)125-130. DOI: 10.1002/celc.201300186.
    [46]
    J. Yin, L. Qi, H. Wang, ACS Appl. Mater. Interfaces 4(2012)2762-2768. DOI: 10.1021/am300385r.
    [47]
    V. Aravindan, N. Shubha, W.C. Ling, S. Madhavi, J. Mater. Chem. A 1(2013)6145-6151. DOI: 10.1039/c3ta11103b.
    [48]
    H.-G. Jung, N. Venugopal, B. Scrosati, Y.-K. Sun, J. Power Sources 221(2013)266-271. DOI: 10.1016/j.jpowsour.2012.08.039.
    [49]
    A. Gopalakrishnan, C.S. Sharma, J. Energy Storage 55(2022). DOI: 10.1016/j.est.2022.105788.
    [50]
    U. Bhattacharjee, S. Bhowmik, S. Ghosh, S.K. Martha, J. Power Sources 542(2022). DOI: 10.1016/j.jpowsour.2022.231768.
    [51]
    C. Wang, Q. Yu, N. Zhao, B. Li, W. Shen, F. Kang, Z.-H. Huang, R. Lv, J. Materiomics 8(2022)1149-1157. DOI: 10.1016/j.jmat.2022.06.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return