Volume 9 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Bing Chang, Zhaojun Min, Ning Liu, Nan Wang, Maohong Fan, Jing Fan, Jianji Wang. Electrocatalytic CO2 reduction to syngas. Green Energy&Environment, 2024, 9(7): 1085-1100. doi: 10.1016/j.gee.2023.05.005
Citation: Bing Chang, Zhaojun Min, Ning Liu, Nan Wang, Maohong Fan, Jing Fan, Jianji Wang. Electrocatalytic CO2 reduction to syngas. Green Energy&Environment, 2024, 9(7): 1085-1100. doi: 10.1016/j.gee.2023.05.005

Electrocatalytic CO2 reduction to syngas

doi: 10.1016/j.gee.2023.05.005
  • While carbon dioxide (CO2) is a major greenhouse gas, it is also an important C1 resource. In the trend of energy conservation and emission reduction, electrocatalytic reduction has become a very promising strategy for CO2 utilization because it can convert CO2 directly to high-valued chemicals and fuels under mild conditions. In particular, the product CO and by-product H2 can be combined into syngas by an electrocatalytic CO2 reduction reaction (CO2RR) in an aqueous medium. Different molar ratios of CO and H2 may be used to produce essential bulk chemicals or liquid fuels such as methanol, alkanes, and olefins through thermochemical catalysis, Fischer–Tropsch synthesis, microbial fermentation, and other techniques. This work discusses the latest strategies in controlling the molar ratio of CO/H2 and improving the yield of CO2RR-to-syngas. The challenges of electrocatalytic syngas production are analyzed from an industrial application perspective, and the possible measures to overcome them are proposed in terms of new catalyst design, electrolyte innovation, flow reactor optimization, anodic reaction coupling, and operando technique application.

     

  • loading
  • [1]
    I.V. Yentekakis, P. Panagiotopoulou, G. Artemakis, Applied Catalysis B:Environmental 296(2021)120210.
    [2]
    V. Andrei, B. Reuillard, E. Reisner, Nature Materials 19(2020)189-194.
    [3]
    F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 351(2016)1065-1068.
    [4]
    D.A. Hickman, L.D. Schmidt, Science 259(1993)343-346.
    [5]
    D.K. Binte Mohamed, A. Veksha, Q.L.M. Ha, W.P. Chan, T.-T. Lim, G. Lisak, Fuel 318(2022)123602.
    [6]
    V.N. Nguyen, L. Blum, Chemie Ingenieur Technik 87(2015)354-375.
    [7]
    S. Chu, P. Ou, R.T. Rashid, Y. Pan, D. Liang, H. Zhang, J. Song, Green Energy&Environment 7(2022)545-553.
    [8]
    H. Prajitno, Y. Kong, S. Kim, H. Im, J. Yoo, H. Choi, J. Lim, S. Kim, D. Chun, S. Lee, Fuel 280(2020)118661.
    [9]
    S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Angewandte Chemie International Edition 60(2021)20627-20648.
    [10]
    G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chemical Society Reviews 50(2021)4993-5061.
    [11]
    W. Ni, Z. Liu, X. Guo, Y. Zhang, C. Ma, Y. Deng, S. Zhang, Applied Catalysis B:Environmental 291(2021)120092.
    [12]
    D. Yang, Q. Zhu, X. Sun, C. Chen, W. Guo, G. Yang, B. Han, Angew Chem Int Ed Engl 59(2020)2354-2359.
    [13]
    S. Hernandez, M. Amin Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Green Chemistry 19(2017)2326-2346.
    [14]
    S. Lu, Y. Shi, N. Meng, S. Lu, Y. Yu, B. Zhang, Cell Reports Physical Science 1(2020)100237.
    [15]
    S. Guo, S. Zhao, X. Wu, H. Li, Y. Zhou, C. Zhu, N. Yang, X. Jiang, J. Gao, L. Bai, Y. Liu, Y. Lifshitz, S.T. Lee, Z. Kang, Nat Commun 8(2017)1828.
    [16]
    H. Li, P. Wen, D.S. Itanze, Z.D. Hood, X. Ma, M. Kim, S. Adhikari, C. Lu, C. Dun, M. Chi, Y. Qiu, S.M. Geyer, Nat Commun 10(2019)5724.
    [17]
    D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, S.I. Woo, Angewandte Chemie International Edition 55(2016)9297-9300.
    [18]
    F. Marques Mota, D.L.T. Nguyen, J.-E. Lee, H. Piao, J.-H. Choy, Y.J. Hwang, D.H. Kim, ACS Catalysis 8(2018)4364-4374.
    [19]
    T.N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen, M. Fontecave, ACS Catalysis 7(2017)1520-1525.
    [20]
    X. Wang, J. Lv, J. Zhang, X.L. Wang, C. Xue, G. Bian, D. Li, Y. Wang, T. Wu, Nanoscale 12(2020)772-784.
    [21]
    Z. Min, B. Chang, C. Shao, X. Su, N. Wang, Z. Li, H. Wang, Y. Zhao, M. Fan, J. Wang, Applied Catalysis B:Environmental 326(2023)122185.
    [22]
    M.B. Ross, C.T. Dinh, Y. Li, D. Kim, P. De Luna, E.H. Sargent, P. Yang, Journal of the American Chemical Society 139(2017)9359-9363.
    [23]
    M.B. Ross, Y. Li, P. De Luna, D. Kim, E.H. Sargent, P. Yang, Joule 3(2019)257-264.
    [24]
    N. Meng, C. Liu, Y. Liu, Y. Yu, B. Zhang, Angew Chem Int Ed Engl 58(2019)18908-18912.
    [25]
    Q. He, D. Liu, J.H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song, J.G. Chen, Angew Chem Int Ed Engl 59(2020)3033-3037.
    [26]
    B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu, F. Peng, ACS Appl Mater Interfaces 10(2018)20530-20539.
    [27]
    S.-Y. Zhang, Y.-Y. Yang, Y.-Q. Zheng, H.-L. Zhu, Journal of Solid State Chemistry 263(2018)44-51.
    [28]
    B. Chang, X.-G. Zhang, Z. Min, W. Lu, Z. Li, J. Qiu, H. Wang, J. Fan, J. Wang, Journal of Materials Chemistry A 9(2021)17876-17884.
    [29]
    J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju, T. Yao, C. Wang, H. Ju, J. Zhu, S. Wei, Y. Xie, Angew Chem Int Ed Engl 56(2017)9121-9125.
    [30]
    R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu, J. Zeng, Adv Mater 30(2018)1705872.
    [31]
    Y. Ji, Y. Shi, C. Liu, B. Zhang, Science China Materials 63(2020)2351-2357.
    [32]
    J. Gui, K. Zhang, X. Zhan, Y. Yu, T. Huang, Y. Li, J. Xue, X. Jin, S. Gao, Y. Xie, Sustainable Energy&Fuels 6(2022)1512-1518.
    [33]
    K. Cao, Y. Ji, S. Bai, X. Huang, Y. Li, Q. Shao, Journal of Materials Chemistry A 9(2021)18349-18355.
    [34]
    H. He, D. Xia, X. Yu, J. Wu, Y. Wang, L. Wang, L. Wu, J. Huang, N. Zhao, L. Deng, Y.-N. Liu, Applied Catalysis B:Environmental 312(2022)121392.
    [35]
    P. Chen, Y. Jiao, Y.-H. Zhu, S.-M. Chen, L. Song, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Journal of Materials Chemistry A 7(2019)7675-7682.
    [36]
    H. Xie, S. Chen, F. Ma, J. Liang, Z. Miao, T. Wang, H.L. Wang, Y. Huang, Q. Li, ACS Appl Mater Interfaces 10(2018)36996-37004.
    [37]
    Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J.-J. Zhu, S. Sun, Journal of the American Chemical Society 139(2017)4290-4293.
    [38]
    Y. Hua, B. Zhang, W. Hao, Z. Gao, Cell Reports Physical Science 3(2021)100703.
    [39]
    S. Shen, C. Han, B. Wang, Y. Du, Y. Wang, Applied Catalysis B:Environmental 279(2020)119380.
    [40]
    R. Daiyan, R. Chen, P. Kumar, N.M. Bedford, J. Qu, J.M. Cairney, X. Lu, R. Amal, ACS Applied Materials&Interfaces 12(2020)9307-9315.
    [41]
    W. Xi, R. Ma, H. Wang, Z. Gao, W. Zhang, Y. Zhao, ACS Sustainable Chemistry&Engineering 6(2018)7687-7694.
    [42]
    L. Cao, X. Wu, Y. Liu, F. Mao, Y. Shi, J. Li, M. Zhu, S. Dai, A. Chen, P.F. Liu, H.G. Yang, Journal of Materials Chemistry A 10(2022)9954-9959.
    [43]
    Y. Hori, A. Murata, R. Takahashi, Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases 85(1989)2309-2326.
    [44]
    M.R. Thorson, K.I. Siil, P.J.A. Kenis, Journal of The Electrochemical Society 160(2013) F69-F74.
    [45]
    A. Murata, Y. Hori, Bulletin of the Chemical Society of Japan 64(1991)123-127.
    [46]
    K. Ogura, J.R. Ferrell, A.V. Cugini, E.S. Smotkin, M.D. Salazar-Villalpando, Electrochimica Acta 56(2010)381-386.
    [47]
    M.B. Ross, C.T. Dinh, Y. Li, D. Kim, P. De Luna, E.H. Sargent, P. Yang, J Am Chem Soc 139(2017)9359-9363.
    [48]
    C. An, Y. Shen, W. Yan, L. Dai, C. An, Nano Research 14(2021)3907-3912.
    [49]
    W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C.J. Hawxhurst, Q. Wu, J.G. Chen, Energy&Environmental Science 10(2017)1180-1185.
    [50]
    Y. Liu, D. Tian, A.N. Biswas, Z. Xie, S. Hwang, J.H. Lee, H. Meng, J.G. Chen, Angew Chem Int Ed Engl 59(2020)11345-11348.
    [51]
    J.H. Lee, S. Kattel, Z. Jiang, Z. Xie, S. Yao, B.M. Tackett, W. Xu, N.S. Marinkovic, J.G. Chen, Nat Commun 10(2019)3724.
    [52]
    S. Zhu, Q. Wang, X. Qin, M. Gu, R. Tao, B.P. Lee, L. Zhang, Y. Yao, T. Li, M. Shao, Advanced Energy Materials 8(2018)1802238.
    [53]
    R. Cui, Q. Shen, C. Guo, B. Tang, N. Yang, G. Zhao, Applied Catalysis B:Environmental 261(2020)118253.
    [54]
    P. Kang, Z. Chen, A. Nayak, S. Zhang, T.J. Meyer, Energy Environ. Sci. 7(2014)4007-4012.
    [55]
    B. Kumar, J.P. Brian, V. Atla, S. Kumari, K.A. Bertram, R.T. White, J.M. Spurgeon, ACS Catalysis 6(2016)4739-4745.
    [56]
    Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G. Zangari, ACS Catalysis 7(2017)5381-5390.
    [57]
    S. Chu, S. Fan, Y. Wang, D. Rossouw, Y. Wang, G.A. Botton, Z. Mi, Angewandte Chemie International Edition 55(2016)14262-14266.
    [58]
    M. Beheshti, S. Kakooei, M.C. Ismail, S. Shahrestani, Electrochimica Acta 341(2020)135976.
    [59]
    L. Meng, E. Zhang, H. Peng, Y. Wang, D. Wang, H. Rong, J. Zhang, ChemCatChem 14(2022) e202101801.
    [60]
    K. Lv, C. Teng, M. Shi, Y. Yuan, Y. Zhu, J. Wang, Z. Kong, X. Lu, Y. Zhu, Advanced Functional Materials 28(2018)1802339.
    [61]
    J. Gu, C.-S. Hsu, L. Bai, M. Chen Hao, X. Hu, Science 364(2019)1091-1094.
    [62]
    N. Meng, W. Zhou, Y. Yu, Y. Liu, B. Zhang, ACS Catalysis 9(2019)10983-10989.
    [63]
    P.W. Dunfeng Gao, Hefei Li, Long Lin, Guoxiong Wang, Xinhe Bao, Acta Phys.-Chim. Sin. 37(2021)2009021.
    [64]
    W. Shan, R. Liu, H. Zhao, Z. He, Y. Lai, S. Li, G. He, J. Liu, ACS Nano 14(2020)11363-11372.
    [65]
    A. Schizodimou, G. Kyriacou, Electrochimica Acta 78(2012)171-176.
    [66]
    D. Kopljar, N. Wagner, E. Klemm, Chemical Engineering&Technology 39(2016)2042-2050.
    [67]
    B. Kim, S. Ma, H.-R. Molly Jhong, P.J.A. Kenis, Electrochimica Acta 166(2015)271-276.
    [68]
    S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, Physical Chemistry Chemical Physics 18(2016)7075-7084.
    [69]
    M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Energy&Environmental Science 8(2015)2574-2599.
    [70]
    B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, R.I. Masel, Science 334(2011)643-644.
    [71]
    C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Journal of the American Chemical Society 126(2004)5300-5308.
    [72]
    A. Salehi-Khojin, H.-R.M. Jhong, B.A. Rosen, W. Zhu, S. Ma, P.J.A. Kenis, R.I. Masel, The Journal of Physical Chemistry C 117(2013)1627-1632.
    [73]
    B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, A. Salehi-Khojin, Nature Communications 4(2013)2819.
    [74]
    X. Sun, X. Kang, Q. Zhu, J. Ma, G. Yang, Z. Liu, B. Han, Chemical Science 7(2016)2883-2887.
    [75]
    M. Bevilacqua, J. Filippi, H.A. Miller, F. Vizza, Energy Technology 3(2015)197-210.
    [76]
    P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etiévant, International Journal of Hydrogen Energy 35(2010)5043-5052.
    [77]
    M. Wang, Q. Zou, X. Dong, N. Xu, R. Shao, J. Ding, Y. Zhang, J. Qiao, Green Energy&Environment 8(2023)893-903.
    [78]
    K. Hara, A. Kudo, T. Sakata, M. Watanabe, Journal of The Electrochemical Society 142(1995) L57-L59.
    [79]
    K. Hara, T. Sakata, Bulletin of the Chemical Society of Japan 70(1997)571-576.
    [80]
    Y. Hori, H. Ito, K. Okano, K. Nagasu, S. Sato, Electrochimica Acta 48(2003)2651-2657.
    [81]
    E.A. Hernández-Pagán, N.M. Vargas-Barbosa, T. Wang, Y. Zhao, E.S. Smotkin, T.E. Mallouk, Energy&Environmental Science 5(2012)7582-7589.
    [82]
    C.C.L. Mccrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Journal of the American Chemical Society 137(2015)4347-4357.
    [83]
    Y.C. Li, D. Zhou, Z. Yan, R.H. Goncalves, D.A. Salvatore, C.P. Berlinguette, T.E. Mallouk, ACS Energy Letters 1(2016)1149-1153.
    [84]
    D.T. Whipple, E.C. Finke, P.J.A. Kenis, Electrochemical and Solid-State Letters 13(2010) B109.
    [85]
    J. Li, Y. Kuang, Y. Meng, X. Tian, W.-H. Hung, X. Zhang, A. Li, M. Xu, W. Zhou, C.-S. Ku, C.-Y. Chiang, G. Zhu, J. Guo, X. Sun, H. Dai, Journal of the American Chemical Society 142(2020)7276-7282.
    [86]
    M.C. Figueiredo, I. Ledezma-Yanez, M.T.M. Koper, ACS Catalysis 6(2016)2382-2392.
    [87]
    N. Heidary, K.H. Ly, N. Kornienko, Nano Letters 19(2019)4817-4826.
    [88]
    A.D. Handoko, F. Wei, Jenndy, B.S. Yeo, Z.W. Seh, Nature Catalysis 1(2018)922-934.
    [89]
    D. Ohl, Y.U. Kayran, J.R.C. Junqueira, V. Essmann, T. Bobrowski, W. Schuhmann, Langmuir 34(2018)12293-12301.
    [90]
    M.R. Singh, J.D. Goodpaster, A.Z. Weber, M. Head-Gordon, A.T. Bell, Proceedings of the National Academy of Sciences 114(2017) E8812-E8821.
    [91]
    X.-G. Zhang, X. Jin, D.-Y. Wu, Z.-Q. Tian, The Journal of Physical Chemistry C 122(2018)25447-25455.
    [92]
    I.V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proceedings of the National Academy of Sciences 115(2018) E9261-E9270.
    [93]
    O. Masatoshi, Bulletin of the Chemical Society of Japan 70(1997)2861-2880.
    [94]
    X. Chang, S. Vijay, Y. Zhao, N. J. Oliveira, K. Chan, B. Xu, Nature Communication 13,(2022)2656.
    [95]
    K. Lakshmanan, W.-H. Huang, S.A. Chala, B.W. Taklu, E.A. Moges, J.-F. Lee, P.-Y. Huang, Y.-C. Lee, M.-C. Tsai, W.-N. Su, B.J. Hwang, Advanced Functional Materials 32(2022)2109310.
    [96]
    T. Wang, X. Cao, L. Jiao, Angewandte Chemie International Edition 61(2022) e202213328.
    [97]
    S. Verma, S. Lu, P.J.A. Kenis, Nature Energy 4(2019)466-474.
    [98]
    T. Li, Y. Cao, J. He, C.P. Berlinguette, ACS Central Science 3(2017)778-783.
    [99]
    Y. Wang, S. Gonell, U.R. Mathiyazhagan, Y. Liu, D. Wang, A.J.M. Miller, T.J. Meyer, ACS Applied Energy Materials 2(2019)97-101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return