Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Yu Chen, Shuzi Liu, Zixin Bi, Zheng Li, Fengyi Zhou, Ruifen Shi, Tiancheng Mu. Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion, lithium-metal and post-lithium-ion batteries for green and safe energy. Green Energy&Environment, 2024, 9(6): 966-991. doi: 10.1016/j.gee.2023.05.002
Citation: Yu Chen, Shuzi Liu, Zixin Bi, Zheng Li, Fengyi Zhou, Ruifen Shi, Tiancheng Mu. Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion, lithium-metal and post-lithium-ion batteries for green and safe energy. Green Energy&Environment, 2024, 9(6): 966-991. doi: 10.1016/j.gee.2023.05.002

Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion, lithium-metal and post-lithium-ion batteries for green and safe energy

doi: 10.1016/j.gee.2023.05.002
  • Sustainable energy is the key issue for the environment protection, human activity and economic development. Ionic liquids (ILs) and deep eutectic solvents (DESs) are dogmatically regarded as green and sustainable electrolytes in lithium-ion, lithium-metal (e.g., lithium-sulphur, lithium-oxygen) and post-lithium-ion (e.g., sodium-ion, magnesium-ion, and aluminum-ion) batteries. High electrochemical stability of ILs/DESs is one of the prerequisites for green, sustainable and safe energy; while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost, releasing volatile/hazardous by-products and hindering the recyclability. However, (1) are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries? (2) are ILs/DESs-based electrolytes really electrochemically stable in real batteries? (3) how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development? Up to now, there is no summary on this topic, to the best of our knowledge. Here, we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions. More importantly, electrochemical stability of ILs/DESs in real lithium-ion, lithium-metal and post-lithium-ion batteries is concluded and compared. Finally, the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion, lithium-metal and post-lithium-ion batteries are proposed. This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion, lithium-metal and post-lithium-ion batteries to achieve sustainable and green energy.

     

  • loading
  • [1]
    V. Hessel, N.N. Tran, M.R. Asrami, Q.D. Tran, N. Van Duc Long, M. Escriba-Gelonch, J.O. Tejada, S. Linke, K. Sundmacher, Green Chem. 24 (2022) 410-437.
    [2]
    G. Cui, J. Zheng, X. Luo, W. Lin, F. Ding, H. Li, C. Wang, Angew. Chem. Int. Ed. 52 (2013) 10620-10624.
    [3]
    B.D. Rabideau, M. Soltani, R.A. Parker, B. Siu, E.A. Salter, A. Wierzbicki, K.N. West, J.H. Davis, Jr., Phys. Chem. Chem. Phys. 22 (2020) 12301-12311.
    [4]
    Y. Liu, Z. Dai, Z. Zhang, S. Zeng, F. Li, X. Zhang, Y. Nie, L. Zhang, S. Zhang, X. Ji, Green Energy Environ. 6 (2021) 314-328.
    [5]
    X.T. Hu, X.M. Yang, L.F. Chen, M.C. Mei, Z. Song, Z.F. Fei, P.J. Dyson, Z.W. Qi, Chem. Eng. J. 435 (2022).
    [6]
    L. Chen, Y. Xiong, H. Qin, Z. Qi, ChemSusChem 15 (2022) e202102635.
    [7]
    W. Zhang, W. Zhao, S. Ren, Y. Hou, W. Wu, Green Chem. Eng. (2022) DOI: 10.1016/j.gce.2022.07.003.
    [8]
    B.R. Wang, L. Lin, S.H. Ren, W.Z. Wu, Ind. Eng. Chem. Res. 60 (2021) 13740-13747.
    [9]
    J. Wang, Green Energy Environ. 5 (2020) 122-123.
    [10]
    Z. Chen, Q. Gui, Y. Wang, Green Chem. Eng. 2 (2021) 346-358.
    [11]
    J.W. Wang, X.D. Tang, Z.W. Qi, T. Xu, T. Zou, Y. Bie, D.J. Wang, Y.F. Liu, ACS Sustainable Chem. Eng. 10 (2022) 2248-2261.
    [12]
    Y. Chen, Y. Zhao, B. Yu, Y. Wu, X. Yu, S. Guo, B. Han, Z. Liu, ACS Sustainable Chem. Eng. 8 (2020) 9088-9094.
    [13]
    Y. Chen, X. Gao, X. Liu, G. Ji, L. Fu, Y. Yang, Q. Yu, W. Zhang, X. Xue, Renewable Energy 147 (2020) 594-601.
    [14]
    Y. Chen, T. Mu, Green Chem. 21 (2019) 2544-2574.
    [15]
    L. Chen, T. Zhou, L.F. Chen, Y.M. Ye, Z.W. Qi, H. Freund, K. Sundmacher, Chem. Commun. 47 (2011) 9354-9356.
    [16]
    K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, J. Energy Chem. 59 (2021) 320-333.
    [17]
    M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta 51 (2006) 5567-5580.
    [18]
    A. Lewandowski, A. Swiderska-Mocek, J. Power. Sources 194 (2009) 601-609.
    [19]
    D.Y. Shi, F.Y. Zhou, W.B. Mu, C. Ling, T.C. Mu, G.Q. Yu, R.Q. Li, Phys. Chem. Chem. Phys. 24 (2022) 26029-26036.
    [20]
    C.N. Dai, M. Chen, W.B. Mu, B. Peng, G.Q. Yu, N. Liu, R.N. Xu, N. Wang, B.H. Chen, Sep. Purif. Technol. 298 (2022) 121618.
    [21]
    Y. Chen, Y. Wang, Y. Bai, M. Feng, F. Zhou, Y. Lu, Y. Guo, Y. Zhang, T. Mu, Green Chem. Eng. (2023) DOI: 10.1016/j.gce.2022.06.005.
    [22]
    O. Zabihi, M. Ahmadi, R. Yadav, R. Mahmoodi, E.N. Kalali, S. Nikafshar, M.R.G. Ferdowsi, D.-Y. Wang, M. Naebe, ACS Sustainable Chem. Eng. 9 (2021) 4463-4476.
    [23]
    J.P. Wojeicchowski, D.O. Abranches, A.M. Ferreira, M.R. Mafra, J.A.P. Coutinho, ACS Sustainable Chem. Eng. 9 (2021) 10240-10249.
    [24]
    H. Qin, X. Hu, J. Wang, H. Cheng, L. Chen, Z. Qi, Green Energy Environ. 5 (2020) 8-21.
    [25]
    H. Cheng, Z. Qi, Sep. Purif. Technol. 274 (2021) 119027.
    [26]
    R. Wang, H. Qin, J. Wang, H. Cheng, L. Chen, Z. Qi, Green Energy Environ. 6 (2021) 405-412.
    [27]
    Y. Wang, S. Wang, L. Liu, Green Chem. Eng. 3 (2022) 5-14.
    [28]
    X. Tang, S. Lv, K. Jiang, G. Zhou, X. Liu, J. Power. Sources 542 (2022) 231792.
    [29]
    L. Ma, B. Hou, N. Shang, S. Zhang, C. Wang, L. Zong, J. Song, J. Wang, X. Zhao, Mater. Chem. Front. 5 (2021) 4579-4588.
    [30]
    Q. Liu, T. Meng, L. Yu, S. Guo, Y. Hu, Z. Liu, X. Hu, Small Methods 6 (2022) 2200380.
    [31]
    S. Wang, Y. Jiang, X. Hu, Adv. Mater. 34 (2022) 2200945.
    [32]
    C. Zhang, B. Chen, Z. Cai, F. Zhang, R. Huang, M. Yan, Y. Liu, H. Pan, J. Mater. Chem. A 10 (2022) 20545-20551.
    [33]
    T.C. Nirmale, N.D. Khupse, R.S. Kalubarme, M.V. Kulkarni, A.J. Varma, B.B. Kale, ACS Sustainable Chem. Eng. 10 (2022) 8297-8304.
    [34]
    S.B. da Silva Filho, L.V.F. de Oliveira, R.d.S. Oliveira, R. Faez, V.L. Martins, F.F. Camilo, Solid State Ionics 379 (2022) 115901.
    [35]
    L. Cong, H. Zhu, S. Zhang, Y. Xing, J. Xia, X. Meng, P. Yang, J. Electroanal. Chem. 908 (2022) 116105.
    [36]
    S.S. More, N.D. Khupse, J.D. Ambekar, M.V. Kulkarni, B.B. Kale, Energy Fuels 36 (2022) 4999-5008.
    [37]
    J.C. Barbosa, D.M. Correia, E.M. Fernandez, A. Fidalgo-Marijuan, G. Barandika, R. Goncalves, S. Ferdov, V. de Zea Bermudez, C.M. Costa, S. Lanceros-Mendez, ACS Appl. Mater. Inter. 13 (2021) 48889-48900.
    [38]
    L. Zhang, M. Al-Mamun, Green Energy Environ. 7 (2022) 173-175.
    [39]
    J. Li, F. Li, L. Zhang, H. Zhang, U. Lassi, X. Ji, Green Chem. Eng. 2 (2021) 253-265.
    [40]
    U. Pal, D. Rakov, B. Lu, B. Sayahpour, F. Chen, B. Roy, D.R. MacFarlane, M. Armand, P.C. Howlett, Y.S. Meng, Energ. Environ. Sci. 15 (2022) 1907-1919.
    [41]
    L. Ma, L.-J. Yu, J. Liu, Y.-Q. Su, S. Li, X. Zang, T. Meng, S. Zhang, J. Song, J. Wang, X. Zhao, Z. Cui, N. Wang, Y. Zhao, Energy Storage Mater. 44 (2022) 180-189.
    [42]
    L. Yu, L. Yu, Q. Liu, T. Meng, S. Wang, X. Hu, Adv. Funct. Mater. 32 (2022) 2110653.
    [43]
    L. Yu, S. Guo, Y. Lu, Y. Li, X. Lan, D. Wu, R. Li, S. Wu, X. Hu, Adv. Energy Mater. 9 (2019) 1900257.
    [44]
    R.-S. Kuhnel, M. Lubke, M. Winter, S. Passerini, A. Balducci, J. Power. Sources 214 (2012) 178-184.
    [45]
    E. Cho, J. Mun, O.B. Chae, O.M. Kwon, H.-T. Kim, J.H. Ryu, Y.G. Kim, S.M. Oh, Electrochem. Commun. 22 (2012) 1-3.
    [46]
    A. Basile, A.I. Bhatt, A.P. O’Mullane, Nat. Commun. 7 (2016) 11794.
    [47]
    J. Jang, J.-S. Shin, S. Ko, H. Park, W.-J. Song, C.B. Park, J. Kang, Adv. Energy Mater. 12 (2022) 2103955.
    [48]
    X. Qi, D. Cai, X. Wang, X. Xia, C. Gu, J. Tu, ACS Appl. Mater. Inter. 14 (2022) 6859-6868.
    [49]
    Z. Wang, W. Zheng, B. Li, W. Sun, L. Zhao, W. Yuan, Chem. Eng. J. 433 (2022) 133749.
    [50]
    M. Walter, M.V. Kovalenko, K.V. Kravchyk, New J. Chem. 44 (2020) 1677-1683.
    [51]
    B. Wang, E.H. Ang, Y. Yang, Y. Zhang, M. Ye, Q. Liu, C.C. Li, Chem. Eur. J. 27 (2021) 512-536.
    [52]
    F. Shi, C. Chen, Z.-L. Xu, Adv. Fiber Mater. 3 (2021) 275-301.
    [53]
    B. Hou, L. Ma, X. Zang, N. Shang, J. Song, X. Zhao, C. Wang, J. Qi, J. Wang, R. Yu, Chem. Res. Chinese U. 37 (2021) 265 - 273.
    [54]
    F. Duffner, N. Kronemeyer, J. Tubke, J. Leker, M. Winter, R. Schmuch, Nature Energy 6 (2021) 123-134.
    [55]
    T.L. Kulova, V.N. Fateev, E.A. Seregina, A.S. Grigoriev, Int. J. Electrochem. Sci 15 (2020) 7242-7259.
    [56]
    Z. Sun, B. Wang, M.G. Boebinger, A. Magasinski, S. Jhulki, Y. Zhang, W. Fu, M.T. McDowell, G. Yushin, ACS Appl. Mater. Inter. 14 (2022) 33447-33456.
    [57]
    W. Zhang, H. Tian, J. Wang, H. Sun, J. Wang, W. Huang, ACS Appl. Mater. Inter. 14 (2022) 38887-38894.
    [58]
    Y. Jiang, Y. Zhou, D. Chu, Z. Ye, Z. Wang, Y. Chen, A. Liu, Z. Lv, W. Sun, M. Xie, ACS Appl. Energy Mater. 5 (2022) 7822-7829.
    [59]
    N. Zhu, K. Zhang, F. Wu, Y. Bai, C. Wu, Energy Mater. Adv. 2021 (2021) 9204217.
    [60]
    M. Kumar, A.K. Padhan, D. Mandal, T.C. Nagaiah, Energy Storage Mater. 45 (2022) 1052-1061.
    [61]
    H.C. Erythropel, J.B. Zimmerman, T.M. de Winter, L. Petitjean, F. Melnikov, C.H. Lam, A.W. Lounsbury, K.E. Mellor, N.Z. Jankovic, Q. Tu, L.N. Pincus, M.M. Falinski, W. Shi, P. Coish, D.L. Plata, P.T. Anastas, Green Chem. 20 (2018) 1929-1961.
    [62]
    S.S. de Jesus, R. Maciel Filho, Renew. Sustainable Energ. Rev. 157 (2022) 112039.
    [63]
    Y. Chen, D. Yu, Z. Liu, Z. Xue, T. Mu, New J. Chem. 46 (2022) 17640-17668.
    [64]
    Y. Chen, T. Mu, Green Chem. Eng. 2 (2021) 174-186.
    [65]
    Z. Xue, L. Qin, J. Jiang, T. Mu, G. Gao, Phys. Chem. Chem. Phys. 20 (2018) 8382-8402.
    [66]
    B. Wang, L. Qin, T. Mu, Z. Xue, G. Gao, Chem. Rev. 117 (2017) 7113-7131.
    [67]
    Q. Li, J. Jiang, G. Li, W. Zhao, X. Zhao, T. Mu, Sci. China Chem. 59 (2016) 571-577.
    [68]
    G.H. Lane, Electrochim. Acta 83 (2012) 513-528.
    [69]
    N. De Vos, C. Maton, C.V. Stevens, ChemElectroChem 1 (2014) 1258-1270.
    [70]
    E. Piatti, L. Guglielmero, G. Tofani, A. Mezzetta, L. Guazzelli, F. D'Andrea, S. Roddaro, C.S. Pomelli, J. Mol. Liq. 364 (2022) 120001.
    [71]
    Y. Chen, H. Liang, Z. Bi, Z. Li, H. Sun, J. Wang, J. Han, Thermochim. Acta. 723 (2023) 179471.
    [72]
    Y. Chen, X. Han, Z. Liu, Y. Li, H. Sun, H. Wang, J. Wang, J. Mol. Liq. 366 (2022) 120336.
    [73]
    D.O. Abranches, J.A. Coutinho, Curr. Opin. Green Sustain. Chem. (2022) 100612.
    [74]
    N. Schaeffer, D.O. Abranches, L.P. Silva, M.A.R. Martins, P.J. Carvalho, O. Russina, A. Triolo, L. Paccou, Y. Guinet, A. Hedoux, J.A.P. Coutinho, ACS Sustainable Chem. Eng. 9 (2021) 2203-2211.
    [75]
    D.O. Abranches, M.A.R. Martins, L.P. Silva, N. Schaeffer, S.P. Pinho, J.A.P. Coutinho, Chem. Commun. 55 (2019) 10253-10256.
    [76]
    N. Nishi, S. Imakura, T. Kakiuchi, Anal. Chem. 78 (2006) 2726-2731.
    [77]
    A.M. O'Mahony, D.S. Silvester, L. Aldous, C. Hardacre, R.G. Compton, J. Chem. Eng. Data 53 (2008) 2884-2891.
    [78]
    E.I. Rogers, B. Sljukic, C. Hardacre, R.G. Compton, J. Chem. Eng. Data 54 (2009) 2049-2053.
    [79]
    Y.-H. Tian, G.S. Goff, W.H. Runde, E.R. Batista, J. Phys. Chem. B 116 (2012) 11943-11952.
    [80]
    M. Hayyan, F.S. Mjalli, M.A. Hashim, I.M. AlNashef, T.X. Mei, J. Ind. Eng. Chem. 19 (2013) 106-112.
    [81]
    J. Mun, Y.S. Jung, T. Yim, H.Y. Lee, H.-J. Kim, Y.G. Kim, S.M. Oh, J. Power. Sources 194 (2009) 1068-1074.
    [82]
    T. Belhocine, S.A. Forsyth, H.Q.N. Gunaratne, M. Nieuwenhuyzen, A.V. Puga, K.R. Seddon, G. Srinivasan, K. Whiston, Green Chem. 13 (2011) 59-63.
    [83]
    S. Doblinger, T.J. Donati, D.S. Silvester, J. Phys. Chem. C 124 (2020) 20309-20319.
    [84]
    S.S. Moganty, R.E. Baltus, D. Roy, Chem. Phys. Lett. 483 (2009) 90-94.
    [85]
    C.M. Lang, K. Kim, L. Guerra, P.A. Kohl, J. Phys. Chem. B 109 (2005) 19454-19462.
    [86]
    C. Maton, N. De Vos, B.I. Roman, E. Vanecht, N.R. Brooks, K. Binnemans, S. Schaltin, J. Fransaer, C.V. Stevens, ChemPhysChem 13 (2012) 3146-3157.
    [87]
    S. Lerch, T. Strassner, Chem. Eur. J. 25 (2019) 16251-16256.
    [88]
    G.K.P. Dathar, S. Pandian, S.G. Raju, D.-H. Park, H.-R. Kang, K.S. Hariharan, J. Electrochem. Soc. 163 (2016) A1057-A1063.
    [89]
    S. Pandian, K.S. Hariharan, S.P. Adiga, S.M. Kolake, J. Electrochem. Soc. 167 (2020) 070550.
    [90]
    F. Yang, Z. Li, S. Zhang, Q. Zhang, X. Hu, X. Zhang, Y. Deng, Chem. Lett. 40 (2011) 1423-1425.
    [91]
    D. Weingarth, I. Czekaj, Z. Fei, A. Foelske-Schmitz, P.J. Dyson, A. Wokaun, R. Koetz, J. Electrochem. Soc. 159 (2012) H611-H615.
    [92]
    N. Sanchez-Ramirez, B.D. Assresahegn, D. Belanger, R.M. Torresi, J. Chem. Eng. Data 62 (2017) 3437-3444.
    [93]
    C. Lian, H. Liu, C. Li, J. Wu, AIChE J. 65 (2019) 804-810.
    [94]
    Y. Tang, Z. Wang, X. Chi, M.D. Sevilla, X. Zeng, J. Phys. Chem. C 120 (2016) 1004-1012.
    [95]
    M.P.S. Mousavi, A.J. Dittmer, B.E. Wilson, J. Hu, A. Stein, P. Buehlmann, J. Electrochem. Soc. 162 (2015) A2250-A2258.
    [96]
    M. Hajime, Electrochemical Windows of Room-Temperature Ionic Liquids (RTILs), in: H. Ohno (Ed.), Electrochemical Aspects of Ionic Liquids, Second Edition, 2005.
    [97]
    J.Z. Yang, Y. Jin, Y.H. Cao, L.X. Sun, Z.C. Tan, Chem. J. Chinese U. 25 (2004) 1733-1735.
    [98]
    F.U. Shah, I.A. Khan, P. Johansson, Molecules 25 (2020) 2388.
    [99]
    A.S. Ismail, S.Z. El Abedin, O. Hoefft, F. Endres, Electrochem. Commun. 12 (2010) 909-911.
    [100]
    Y. Cao, Y. Chen, X. Sun, Z. Zhang, T. Mu, Phys. Chem. Chem. Phys. 14 (2012) 12252-12262.
    [101]
    J.L. Campbell, K.E. Johnson, J. Electrochem. Soc. 141 (1994) L19-L21.
    [102]
    E. Knipping, C. Aucher, G. Guirado, L. Aubouy, Batteries & Supercaps 2 (2019) 200-204.
    [103]
    M.C. Buzzeo, C. Hardacre, R.G. Compton, ChemPhysChem 7 (2006) 176-180.
    [104]
    Q. Zhang, Q. Li, D. Liu, X. Zhang, X. Lang, J. Mol. Liq. 249 (2018) 1097-1106.
    [105]
    M. Lipsztajn, R.A. Osteryoung, J. Electrochem. Soc. 130 (1983) 1968-1969.
    [106]
    S.I. Hsiu, J.F. Huang, I.W. Sun, C.H. Yuan, J. Shiea, Electrochim. Acta 47 (2002) 4367-4372.
    [107]
    M. Feroci, M. Orsini, A. Inesi, Adv. Synth. Catal. 351 (2009) 2067-2070.
    [108]
    L.G. Chagas, S. Jeong, I. Hasa, S. Passerini, ACS Appl. Mater. Inter. 11 (2019) 22278-22289.
    [109]
    A. Boisset, J. Jacquemin, M. Anouti, Electrochim. Acta 102 (2013) 120-126.
    [110]
    A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, Phys. Chem. Chem. Phys. 15 (2013) 20054-20063.
    [111]
    L. Millia, V. Dall'Asta, C. Ferrara, V. Berbenni, E. Quartarone, F.M. Perna, V. Capriati, P. Mustarelli, Solid State Ionics 323 (2018) 44-48.
    [112]
    P. Jiang, L. Chen, H.Z. Shao, S.H. Huang, Q.S. Wang, Y.B. Su, X.S. Yan, X.M. Liang, J.J. Zhang, J.W. Feng, Z.P. Liu, Acs Energy Letters 4 (2019) 1419-1426.
    [113]
    S. Rao, X. Zou, S. Wang, T. Shi, Y. Lu, L. Ji, H.-Y. Hsu, Q. Xu, X. Lu, J. Electrochem. Soc. 166 (2019) D427-D434.
    [114]
    T.T.A. Dinh, T.T.K. Huynh, L.T.M. Le, T.T.T. Truong, O.H. Nguyen, K.T.T. Tran, M.V. Tran, P.H. Tran, W. Kaveevivitchai, P.M.L. Le, ACS Omega 5 (2020) 23843-23853.
    [115]
    H. Niu, L. Wang, P. Guan, N. Zhang, C. Yan, M. Ding, X. Guo, T. Huang, X. Hu, J. Energy Storage 40 (2021) 102659.
    [116]
    D.-Z. Zhang, Y.-y. Ren, Y. Hu, L. Li, F. Yan, Chinese J. Polym. Sci. 38 (2020) 506-513.
    [117]
    T. Stettner, F.C. Walter, A. Balducci, Batteries & Supercaps 2 (2019) 55-59.
    [118]
    T. Nirmale, N. Khupse, R. Gore, J. Ambekar, M. Kulkarni, A. Varma, B. Kale, ChemistrySelect 3 (2018) 6255-6261.
    [119]
    K. Ueno, J. Murai, H. Moon, K. Dokko, M. Watanabe, J. Electrochem. Soc. 164 (2017) A6088-A6094.
    [120]
    H.-T. Kim, O.M. Kwon, J. Mun, S.M. Oh, T. Yim, Y.G. Kim, Electrochim. Acta 240 (2017) 267-276.
    [121]
    S. Menne, J. Pires, M. Anouti, A. Balducci, Electrochem. Commun. 31 (2013) 39-41.
    [122]
    E. Markevich, V. Baranchugov, D. Aurbach, Electrochem. Commun. 8 (2006) 1331-1334.
    [123]
    J. Fuller, R.T. Carlin, R.A. Osteryoung, J. Electrochem. Soc. 144 (1997) 3881-3886.
    [124]
    P.C. Rath, Y.-W. Wang, J. Patra, B. Umesh, T.-J. Yeh, S. Okada, J. Li, J.-K. Chang, Chem. Eng. J. 415 (2021) 128904.
    [125]
    T.C. Nirmale, N.D. Khupse, R.S. Kalubarme, M.V. Kulkarni, A.J. Varma, B.B. Kale, ACS Sustainable Chem. Eng. 26 (2022) 8297-8304.
    [126]
    K. Sang, B. Wang, J. Ge, T. Zhu, Y. Jiang, L. Zhao, M. Zhou, H. Liang, ChemistrySelect 6 (2021) 2607-2614.
    [127]
    Y. Bencherifi, B. Larhrib, A. Sayegh, G. Nikiforidis, M. Anouti, J. Appl. Electrochem. 51 (2021) 1651-1664.
    [128]
    S. Thayumanasundaram, V.S. Rangasamy, J.W. Seo, J.-P. Locquet, Ionics 20 (2014) 935-941.
    [129]
    T. Anh Ngoc, D. Thanh-Nhan Van, L. Loan-Phung My, L. Thach Ngoc, J. Fluorine Chem. 164 (2014) 38-43.
    [130]
    M. Wang, Z. Shan, J. Tian, K. Yang, X. Liu, H. Liu, K. Zhu, Electrochim. Acta 95 (2013) 301-307.
    [131]
    L. Dong, C. Li, F. Liang, J. Liu, D. Wang, D. Gui, C. Zhu, Int. J. Electrochem. Sci. 15 (2020) 2948-2960.
    [132]
    J. Fu, Y. Xu, L. Dong, L. Chen, Q. Lu, M. Li, X. Zeng, S. Dai, G. Chen, L. Shi, Chem. Eng. J. 405 (2021) 126942.
    [133]
    T. Huang, M.-C. Long, X.-L. Wang, G. Wu, Y.-Z. Wang, Chem. Eng. J. 375 (2019) 122062.
    [134]
    Z. Zhang, Y. Zhang, B. Du, Z. Peng, ACS Omega 3 (2018) 10564-10571.
    [135]
    F. Lu, X. Gao, A. Wu, N. Sun, L. Shi, L. Zheng, J. Phys. Chem. C 121 (2017) 17756-17763.
    [136]
    M. Ravi, S. Song, J. Wang, T. Wang, R. Nadimicherla, J. Mater. Sci.-Mater. El. 27 (2016) 1370-1377.
    [137]
    Z. Hu, J. Chen, Y. Guo, J. Zhu, X. Qu, W. Niu, X. Liu, J. Membr. Sci. 599 (2020) 117827.
    [138]
    X. Gong, H. Luo, G. Liu, C. Luo, Y. Niu, G. Li, Ionics 27 (2021) 2945-2953.
    [139]
    M.S. Grewal, K. Kisu, S.-i. Orimo, H. Yabu, Chem. Lett. 49 (2020) 1465-1469.
    [140]
    Q. Lu, J. Fu, L. Chen, D. Shang, M. Li, Y. Xu, R. Jia, S. Yuan, L. Shi, J. Power. Sources 414 (2019) 31-40.
    [141]
    A. Wang, X. Liu, S. Wang, J. Chen, H. Xu, Q. Xing, L. Zhang, Electrochim. Acta 276 (2018) 184-193.
    [142]
    D. Xie, Y. Xu, Y. Wang, X. Pan, E. Hark, Z. Kochovski, A. Eljarrat, J. Muller, C.T. Koch, J. Yuan, Y. Lu, ACS Nano 16 (2022) 10554-10565.
    [143]
    S. Hu, M. Yi, H. Wu, T. Wang, X. Ma, X. Liu, J. Zhang, Adv. Funct. Mater. 32 (2022) 2111084.
    [144]
    M. Sevilla, N. Diez, A.B. Fuertes, Energy Technol. 9 (2021) 2100268.
    [145]
    X. Cai, B. Ye, J. Ding, Z. Chi, L. Sun, P. Saha, G. Wang, J. Mater. Chem. A 9 (2021) 2459-2469.
    [146]
    Y. Bai, Y. Zhao, W. Li, L. Meng, Y. Bai, G. Chen, Chem. Eng. J. 396 (2020) 125334.
    [147]
    A. Rosenman, R. Elazari, G. Salitra, E. Markevich, D. Aurbach, A. Garsuch, J. Electrochem. Soc. 162 (2015) A470-A473.
    [148]
    J. Zhang, B. Sun, Y. Zhao, A. Tkacheva, Z. Liu, K. Yan, X. Guo, A.M. McDonagh, D. Shanmukaraj, C. Wang, T. Rojo, M. Armand, Z. Peng, G. Wang, Nat. Commun. 10 (2019) 602.
    [149]
    U. Ulissi, G.A. Elia, S. Jeong, F. Mueller, J. Reiter, N. Tsiouvaras, Y.-K. Sun, B. Scrosati, S. Passerini, J. Hassoun, ChemSusChem 11 (2018) 229-236.
    [150]
    E. Knipping, C. Aucher, G. Guirado, L. Aubouy, New J. Chem. 42 (2018) 4693-4699.
    [151]
    J. Bai, H. Lu, Y. Cao, X. Li, J. Wang, RSC Adv. 7 (2017) 30603-30609.
    [152]
    M. Ara, T. Meng, G.-A. Nazri, S.O. Salley, K.Y.S. Ng, J. Electrochem. Soc. 161 (2014) A1969-A1975.
    [153]
    J.-H. Kim, H.-S. Woo, S.-J. Jin, J.S. Lee, W. Kim, K. Ryu, D.-W. Kim, RSC Adv. 5 (2015) 80014-80021.
    [154]
    L. Cecchetto, M. Salomon, B. Scrosati, F. Croce, J. Power. Sources 213 (2012) 233-238.
    [155]
    R. Hagiwara, K. Matsumoto, J. Hwang, T. Nohira, Chem. Rec. 19 (2019) 758-770.
    [156]
    A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang, N. Yanna, J. Wang, Energy Storage Mater. 44 (2022) 206-230.
    [157]
    Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 34 (2022) 2106409.
    [158]
    J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin, Y. Huang, Energ. Environ. Sci. 15 (2022) 499-528.
    [159]
    D. De Sloovere, D.E.P. Vanpoucke, A. Paulus, B. Joos, L. Calvi, T. Vranken, G. Reekmans, P. Adriaensens, N. Eshraghi, A. Mahmoud, F. Boschini, M. Safari, M.K. Van Bael, A. Hardy, Adv. Energy Sustain. Res. 3 (2022) 2100159.
    [160]
    S. Parveen, P. Sehrawat, S.A. Hashmi, Mater. Today Commun. 31 (2022) 103392.
    [161]
    Y. Kitazawa, K. Iwata, R. Kido, S. Imaizumi, S. Tsuzuki, W. Shinoda, K. Ueno, T. Mandai, H. Kokubo, K. Dokko, M. Watanabe, Chem. Mater. 30 (2018) 252-261.
    [162]
    J. Hwang, I. Aoyagi, M. Takiyama, K. Matsumoto, R. Hagiwara, J. Electrochem. Soc. 169 (2022) 297-305.
    [163]
    M.S.A. Rani, M. Mohammad, M.S. Sua'it, A. Ahmad, N.S. Mohamed, Polym. Bull. 78 (2021) 5355-5377.
    [164]
    T.C. Lourenco, L.G. Dias, J.L.F. Da Silva, ACS Appl. Energy Mater. 4 (2021) 4444-4458.
    [165]
    T.D. Vo, H.V. Nguyen, Q.D. Nguyen, Q. Phung, V.M. Tran, P.L.M. Le, J. Chem. 2019 (2019) 7980204.
    [166]
    H. Sun, G. Zhu, X. Xu, M. Liao, Y.-Y. Li, M. Angell, M. Gu, Y. Zhu, W.H. Hung, J. Li, Y. Kuang, Y. Meng, M.-C. Lin, H. Peng, H. Dai, Nat. Commun. 10 (2019) 3302.
    [167]
    D. Minh Phuong, N. Bucher, A. Nagasubramanian, I. Markovits, B. Tian, P.J. Fischer, K.P. Loh, F.E. Kuehn, M. Srinivasan, ACS Appl. Mater. Inter. 11 (2019) 23972-23981.
    [168]
    G. Chen, Y. Bai, Y. Gao, Z. Wang, K. Zhang, Q. Ni, F. Wu, H. Xu, C. Wu, ACS Appl. Mater. Inter. 11 (2019) 43252-43260.
    [169]
    P.J. Fischer, D. Minh Phuong, R.M. Reich, A. Nagasubramanian, M. Srinivasan, F.E. Kuehn, Phys. Chem. Chem. Phys. 20 (2018) 29412-29422.
    [170]
    D. Zhou, R. Liu, J. Zhang, X. Qi, Y.-B. He, B. Li, Q.-H. Yang, Y.-S. Hu, F. Kang, Nano Energy 33 (2017) 45-54.
    [171]
    B.E. Gurkan, Z. Qiang, Y.-M. Chen, Y. Zhu, B.D. Vogt, J. Electrochem. Soc. 164 (2017) H5093-H5099.
    [172]
    F. Wu, N. Zhu, Y. Bai, L. Liu, H. Zhou, C. Wu, ACS Appl. Mater. Inter. 8 (2016) 21381-21386.
    [173]
    J. Hwang, H. Yang, K. Matsumoto, R. Hagiwara, J. Electrochem. Soc. 168 (2021) 030508.
    [174]
    T. Yamamoto, R. Matsubara, T. Nohira, J. Chem. Eng. Data 66 (2021) 1081-1088.
    [175]
    T. Yamamoto, K. Matsumoto, R. Hagiwara, T. Nohira, J. Phys. Chem. C 121 (2017) 18450-18458.
    [176]
    K. Yoshii, T. Masese, M. Kato, K. Kubota, H. Senoh, M. Shikano, ChemElectroChem 6 (2019) 3901-3910.
    [177]
    H. Yamamoto, C.-Y. Chen, K. Kubota, K. Matsumoto, R. Hagiwara, J. Phys. Chem. B 124 (2020) 6341-6347.
    [178]
    M. Arnaiz, A. Bothe, S. Dsoke, A. Balducci, J. Ajuria, J. Electrochem. Soc. 166 (2019) A3504-A3510.
    [179]
    R.M. de Souza, L.J. Amaral de Siqueira, M. Karttunen, L.G. Dias, J. Chem. Inf. Model. 60 (2020) 485-499.
    [180]
    M. Fiore, S. Wheeler, K. Hurlbutt, I. Capone, J. Fawdon, R. Ruffo, M. Pasta, Chem. Mater. 32 (2020) 7653-7661.
    [181]
    L.K. Chellappan, J. Kvello, J.R. Tolchard, P.I. Dahl, S.M. Hanetho, R. Berthelot, A. Fiksdahl, K. Jayasayee, ACS Appl. Energy Mater. 3 (2020) 9585-9593.
    [182]
    X. Tang, R. Muchakayala, S. Song, Z. Zhang, A.R. Polu, J. Ind. Eng. Chem. 37 (2016) 67-74.
    [183]
    P. Canepa, S. Jayaraman, L. Cheng, N.N. Rajput, W.D. Richards, G.S. Gautam, L.A. Curtiss, K.A. Persson, G. Ceder, Energ. Environ. Sci. 8 (2015) 3718-3730.
    [184]
    M.M. Huie, C.A. Cama, P.F. Smith, J. Yin, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Electrochim. Acta 219 (2016) 267-276.
    [185]
    W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, ADVANCED SCIENCE 8 (2021) 2004490.
    [186]
    L. Zhang, Q. Ma, G. Wang, Z. Liu, J. Electroanal. Chem. 888 (2021) 115176.
    [187]
    K.L. Ng, Z. Lu, Y. Wang, C.V. Singh, G. Azimi, J. Phys. Chem. C 125 (2021) 15145-15154.
    [188]
    G. Zhu, M. Angell, C.-J. Pan, M.-C. Lin, H. Chen, C.-J. Huang, J. Lin, A.J. Achazi, P. Kaghazchi, B.-J. Hwang, H. Dai, RSC Adv. 9 (2019) 11322-11330.
    [189]
    G.M. Thorat, V.-C. Ho, J. Mun, Front. Chem. 9 (2022) 825807.
    [190]
    X. Li, F. Ning, L. Luo, J. Wu, Y. Xiang, X. Wu, L. Xiong, X. Peng, RSC Adv. 12 (2022) 8394-8403.
    [191]
    J. Fan, Q. Xiao, Y. Fang, L. Li, W. Yuan, Ionics 25 (2019) 1303-1313.
    [192]
    S. Biria, S. Pathreeker, F.S. Genier, I.D. Hosein, ACS Appl. Polym. Mater. 2 (2020) 2111-2118.
    [193]
    T. Shiga, Y. Kato, Y. Hase, J. Mater. Chem. A 5 (2017) 13212-13219.
    [194]
    Z. Wang, C. Wu, Z. Wang, S. Zhang, D. Yang, Chem. Commun. 58 (2022) 7376-7379.
    [195]
    Z. Wang, Z. Wang, X. Huang, D. Yang, C. Wu, J. Chen, Chem. Commun. 58 (2022) 2160-2163.
    [196]
    G. Cui, D. Yang, H. Qi, Ind. Eng. Chem. Res. 60 (2021) 4536-4541.
    [197]
    L. Li, X. Li, S. Zhang, H. Yan, X. Qiao, H. He, T. Zhu, B. Tang, Green Energy Environ. 7 (2022) 840-853.
    [198]
    S. Marullo, A. Meli, N.T. Dintcheva, G. Infurna, C. Rizzo, F. D'Anna, ChemPlusChem 85 (2020) 301-311.
    [199]
    J. Wang, S. Zhang, Z. Ma, L. Yan, Green Chem. Eng. 2 (2021) 359-367.
    [200]
    D.E. Delgado, D.R. King, K. Cui, J.P. Gong, K.R. Shull, ACS Appl. Mater. Inter. 12 (2020) 43191-43200.
    [201]
    C. Liu, J. Qi, B. He, H. Zhang, J. Ju, X. Yao, Int. J. Smart. Nano. Mat. 12 (2021) 337-350.
    [202]
    Z. Song, Q. Zeng, J.W. Zhang, H.Y. Cheng, L.F. Chen, Z.W. Qi, J. Mol. Liq. 224 (2016) 544-550.
    [203]
    C. Jiang, H. Cheng, Z. Qin, R. Wang, L. Chen, C. Yang, Z. Qi, X. Liu, Green Energy Environ. 6 (2021) 422-431.
    [204]
    Z. Song, X. Hu, Y. Zhou, T. Zhou, Z. Qi, K. Sundmacher, AIChE J. 65 (2019) e16625.
    [205]
    R. Wang, H. Qin, Z. Song, H. Cheng, L. Chen, Z. Qi, Chem. Eng. J. 445 (2022) 136664.
    [206]
    P. Yang, G. Lu, Q. Yang, L. Liu, X. Lai, D. Yu, Green Energy Environ. 7 (2022) 1062-1070.
    [207]
    X. Zhang, B. Tang, Z. Zhou, Green Energy Environ. 6 (2021) 3-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (243) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return