Volume 9 Issue 5
May  2024
Turn off MathJax
Article Contents
Haoyang Zhang, Binyu Wang, Wenfu Yan. The structure-directing role of heterologous seeds in the synthesis of zeolite. Green Energy&Environment, 2024, 9(5): 792-801. doi: 10.1016/j.gee.2023.02.005
Citation: Haoyang Zhang, Binyu Wang, Wenfu Yan. The structure-directing role of heterologous seeds in the synthesis of zeolite. Green Energy&Environment, 2024, 9(5): 792-801. doi: 10.1016/j.gee.2023.02.005

The structure-directing role of heterologous seeds in the synthesis of zeolite

doi: 10.1016/j.gee.2023.02.005
  • Zeolites have been widely used as catalysts, ion-exchangers, and adsorbents in chemical industries, detergent industry, steel industry, glass industry, ceramic industry, medical and health field, and environmental field, and recently applied in energy storage. Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites. In some cases, the target zeolite cannot be formed in the absence of seed zeolite. In homologous seed-assisted synthesis, the structure of the seed zeolite is the same to that of the target zeolite, while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis. In this review, we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the “common composite building units (CBUs) hypothesis” and the “common secondary building units (SBUs) hypothesis”. However, both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses. Finally, we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite.

     

  • loading
  • [1]
    R. Bai, X. Song, W. Yan, J. Yu, Natl. Sci. Rev. 9 (2022) nwac064.
    [2]
    L. F. De Magalhaes, G. R. Da Silva, A.E.C. Peres, Adsorpt. Sci. Technol. 2022 (2022) 1-26.
    [3]
    R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007.
    [4]
    J. Cejka, A. Corma, S.I. Zones, Zeolites and Catalysis-Synthesis, Reactions and Applications, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
    [5]
    S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
    [6]
    F. Xiao, X. Meng, Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications, Springer Heidelberg New York Dordrecht London, 2016.
    [7]
    S. He, S. Wang, S. Fan, L. Luo, K. Yuan, Z. Qin, et al., Catal. Today 410 (2023) 184-192.
    [8]
    S. Wang, L. Zhang, P. Wang, X. Liu, Y. Chen, Z. Qin, et al., Chem 8 (2022) 1376-1394.
    [9]
    C. Fan, Z. Wu, Z. Li, Z. Qin, H. Zhu, M. Dong, et al., Fuel 334 (2023) 126815.
    [10]
    H. Jon, B. Lu, Y.Oumi, K. Itabashi, T. Sano, Microporous Mesoporous Mater. 89 (2006) 88-95.
    [11]
    C. Li, M. Moliner, A. Corma, Angew. Chem. Int. Ed. 57 (2018) 15330-15353.
    [12]
    N. Patdhanagul, K. Rangsriwatananon, K. Siriwong, S. Hengrasmee, Microporous Mesoporous Mater. 153 (2012) 30-34.
    [13]
    C. Baerlocher, L.B. Mccusker, Database of Zeolite Structures, http://www.iza-structure.org/databases/.
    [14]
    G. Fu, R. Yang, Y. Liang, X. Yi, R. Li, N. Yan, et al., Microporous Mesoporous Mater. 320 (2021) 111060.
    [15]
    R. Li, Y. Zhu, Z. Zhang, C. Zhang, G. .Fu, X. Yi, et al., Appl. Catal., B 283 (2021) 119641.
    [16]
    X. Feng, W.K. Hall, J. Catal. 166 (1997) 368-376.
    [17]
    H. Sjovall, R.J. Blint, L. Olsson, Appl. Catal., B 92 (2009) 138-153.
    [18]
    H. Sjovall, L. Olsson, E. Fridell, R.J. Blint, Appl. Catal., B 64 (2006) 180-188.
    [19]
    N. Wilken, K. Wijayanti, K. Kamasamudram, N.W. Currier, R. Vedaiyan, A. Yezerets, et al., Appl. Catal., B 111 (2012) 58-66.
    [20]
    J. H. Kwak, R. G.Tonkyn, D. H. Kim, J. Szanyi, C.H.F. Peden, J. Catal. 275 (2010) 187-190.
    [21]
    M. Moliner, C. Franch, E. Palomares, M. Grill, A. Corma, Chem. Commun. 48 (2012) 8264-8266.
    [22]
    J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H.F. Peden, J. Catal. 287 (2012) 203-209.
    [23]
    S.J. Schmieg, S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, et al., Catal. Today 184 (2012) 252-261.
    [24]
    Y. Zhou, J. Zhang, L. Wang, X. Cui, X. Liu, S.S. Wong, et al., Science 373 (2021) 315-320.
    [25]
    X. Wang, N. Yan, M. Xie, P. Liu, P. Bai, H. Su, et al., Chem. Sci. 12 (2021) 8803-8810.
    [26]
    M.M. Lozinska, E. Mangano, J.P.S. Mowat, A.M. Shepherd, R.F. Howe, S.P. Thompson, et al., J. Am. Chem. Soc. 134 (2012) 17628-17642.
    [27]
    X. Chi, M. Li, J. Di, P. Bai, L. Song, X. Wang, et al., Nature 592 (2021) 551-557.
    [28]
    Z. Yuan, X. Zhu, M. Li, W. Lu, X. Li, H. Zhang, Angew. Chem. Int. Ed. 55 (2016) 3058-3062.
    [29]
    Z. Xu, L. Michos, X. Wang, R. Yang, X. Gu, J. Dong, Chem. Commun. 50 (2014) 2416-2419.
    [30]
    W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, S. Yun, et al., Nano-Micro Lett. 14 (2022) 82.
    [31]
    G.T. Kerr, J. Phys. Chem. 20 (1966) 1047-1050.
    [32]
    Z. Liu, T. Wakihara, D. Nishioka, K. Oshima, T. Takewaki, T. Okubo, Chem. Commun. 50 (2014) 2526-2528.
    [33]
    B. Xie, J. Song, L. Ren, Y. Ji, J. Li, F. Xiao, Chem. Mater. 20 (2008) 4533-4535.
    [34]
    G. Majano, L. Delmotte, V. Valtchev, S. Mintova, Chem. Mater. 21 (2009) 4184-4191.
    [35]
    Y. Kamimura, W. Chaikittisilp, K. Itabashi, A. Shimojima, T. Okubo, Chem. Asian J. 5 (2010) 2182-2191.
    [36]
    K. Iyoki, K. Itabashi, T. Okubo, Chem. Asian J. 8 (2013) 1419-1427.
    [37]
    X. Cheng, J. Mao, X. Lv, T. Hua, X. Cheng, Y. Long, et al., J. Mater. Chem. 2 (2014) 1247-1251.
    [38]
    H. Imai, N. Hayashida, T. Yokoi, T. Tatsumi, Microporous Mesoporous Mater. 196 (2014) 341-348.
    [39]
    Y. Huang, L. Wang, Z. Song, S. Li, M. Yu, Angew. Chem. Int. Ed. 54 (2015) 10843-10847.
    [40]
    J. Zhang, X. Liu, M. Li, C. Liu, D. Hu, G. Zeng, et al., RSC Adv. 5 (2015) 27087-27090.
    [41]
    J. Gascon, W. Blom, A. Van Miltenburg, A. Ferreira, R. Berger, F. Kapteijn, Microporous Mesoporous Mater. 115 (2008) 585-593.
    [42]
    F. Zheng, W. Jing, X. Gu, N. Xu, J. Dong, J. Mater. Sci. 48 (2013) 6286-6292.
    [43]
    Q. Mou, N. Li, S. Xiang, Microporous Mesoporous Mater. 212 (2015) 73-79.
    [44]
    Q. Xu, Y. Gong, W. Xu, J. Xu, F. Deng, T. Dou, J. Colloid Interface Sci. 358 (2011) 252-260.
    [45]
    G.T. Kerr, J. Phys. Chem. 72 (1968) 1385-1386.
    [46]
    V. Valtchev, S. Mintova, V. Dimov, A. Toneva, D. Radev, Zeolites 15 (1995) 193-197.
    [47]
    K. Itabashi, Y. Kamimura, K. Iyoki, A. Shimojima, T. Okubo, J. Am. Chem. Soc. 134 (2012) 11542-11549.
    [48]
    B. Xie, H. Zhang, C. Yang, S. Liu, L. Ren, L. Zhang, et al., Chem. Commun. 47 (2011) 3945-3947.
    [49]
    D.L. Dorset, G.J. Kennedy, K.G. Strohmaier, M.J. Diaz-Cabanas, F. Rey, A. Corma, J. Am. Chem. Soc. 128 (2006) 8862-8867.
    [50]
    H. Zhang, H. Zhang, P. Wang, Y. Zhao, Z. Shi, Y. Zhang, et al., RSC Adv. 6 (2016) 47623-47631.
    [51]
    Y. Bouizi, J. Paillaud, L. Simon, V. Valtchev, Chem. Mater. 19 (2007) 652-654.
    [52]
    A. Ogawa, K. Iyoki, Y. Kamimura, S.P. Elangovan, K. Itabashi, T. Okubo, Microporous Mesoporous Mater. 186 (2014) 21-28.
    [53]
    Q. Yu, C. Li, X. Tang, H. Yi, J. Porous Mater. 23 (2016) 273-284.
    [54]
    T. Nagase, Y. Kiyozumi, Y. Nemoto, N. Hirano, Y. Hasegawa, T. Ikeda, et al., Microporous Mesoporous Mater. 126 (2009) 107-114.
    [55]
    F. Qiu, X. Wang, X. Zhang, H. Liu, S. Liu, K. Yeung, Chem. Eng. J. 147 (2009) 316-322.
    [56]
    H. Zhang, Y. Zhao, H. Zhang, P. Wang, Z. Shi, J. Mao, et al., Chem. Eur J. 22 (2016) 7141-7151.
    [57]
    M.H. Nada, S.C. Larsen, Microporous Mesoporous Mater. 239 (2017) 444-452.
    [58]
    X. Liao, G. Chen, G. Liu, L. Sun, W. Huo, W. Zhang, et al., Microporous Mesoporous Mater. 124 (2009) 210-217.
    [59]
    B. Lu, T. Tsuda, Y. Oumi, K. Itabashi, T. Sano, Microporous Mesoporous Mater. 76 (2004) 1-7.
    [60]
    K. Suzuki, T. Hayakawa, Microporous Mesoporous Mater. 77 (2005) 131-137.
    [61]
    Y. Kubota, K. Itabashi, S. Inagaki, Y. Nishita, R. Komatsu, Y. Tsuboi, et al., Chem. Mater. 26 (2014) 1250-1259.
    [62]
    Q. Wu, X. Wang, X. Meng, C. Yang, Y. Liu, Y. Jin, et al., Microporous Mesoporous Mater. 186 (2014) 106-112.
    [63]
    Y. Kamimura, K. Itabashi, T. Okubo, Microporous Mesoporous Mater. 147 (2012) 149-156.
    [64]
    I. Mochida, S. Eguchi, M. Hironaka, S. Nagao, K. Sakanishi, D.D. Whitehurst, Zeolites 18 (1997) 142-151.
    [65]
    Z. Zhang, B. Qin, X. Zhang, F. Ling, W. Sun, X. Fang, J. Porous Mater. 20 (2013) 515-521.
    [66]
    C. Yang, L. Ren, H. Zhang, L. Zhu, L. Wang, X. Meng, F. Xiao, J. Mater. Chem. 22 (2012) 12238-12245.
    [67]
    Y. Toshiyuki, Y. Masato, I. Hiroyuki, T. Takashi, Angew. Chem. Int. Ed. 48 (2009) 9884-9887.
    [68]
    W. Zhang, Y. Wu, J. Gu, H. Zhou, J. Wang, Mater. Res. Bull. 46 (2011) 1451-1454.
    [69]
    Y. Wang, X. Wang, Q. Wu, X. Meng, Y. Jin, X. Zhou, et al., Catal. Today 226 (2014) 103-108.
    [70]
    K. Iyoki, K. Itabashi, W. Chaikittisilp, S.P. Elangovan, T. Wakihara, S. Kohara, et al., Chem. Mater. 26 (2014) 1957-1966.
    [71]
    Y. Li, W. Yang, J. Membr. Sci. 316 (2008) 3-17.
    [72]
    J. Caro, M. Noack, Microporous Mesoporous Mater. 115 (2008) 215-233.
    [73]
    N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Chem. Soc. Rev. 44 (2015) 7128-7154.
    [74]
    H. Maekawa, Y. Kubota, Y. Sugi, Chem. Lett. 33 (2004) 1126-1127.
    [75]
    Y. Kubota, H. Maekawa, S. Miyata, T. Tatsumi, Y. Sugi, Microporous Mesoporous Mater. 101 (2007) 115-126.
    [76]
    S. I. Zones, Y. Nakagawa, Microporous Mater. 2 (1994) 543-555.
    [77]
    R.K. Ahedi, Y. Kubota, Y. Sugi, J. Mater. Chem. 11 (2001) 2922-2924.
    [78]
    K. Honda, A. Yashiki, M. Itakura, Y. Ide, M. Sadakane, T. Sano, Microporous Mesoporous Mater. 142 (2011) 161-167.
    [79]
    H. Pan, Q. Pan, Y. Zhao, Y. Luo, X. Shu, M. He, Ind. Eng. Chem. Res. 49 (2010) 7294-7302.
    [80]
    Q. Yu, Q. Zhang, J. Liu, C. Li, Q. Cui, CrystEngComm 15 (2013) 7680-7687.
    [81]
    S.I. Zones, Y. Nakagawa, G.S. Lee, C.Y. Chen, L.T. Yuen, Microporous Mesoporous Mater. 21 (1998) 199-211.
    [82]
    S. I. Zones, R. A. Van Nordstrand, Zeolites 8 (1988) 409-415.
    [83]
    S.I. Zones, J. Chem. Soc. 86 (1990) 3467-3472.
    [84]
    L. Wang, P. Tian, Y. Yuan, M. Yang, D. Fan, H. Zhou, et al., Microporous Mesoporous Mater. 196 (2014) 89-96.
    [85]
    P. Chu, R.B. Lapierre, Crystallization of ZSM-5 from Reaction Mixtures Containing Zeolite Beta, vol. 4,650,655, US Patent 1987.
    [86]
    H.N. Sun, Two Step Process for the Preparation of Zeolite A by Hydrothermal Treatment of Heulandite, vol. 4,401,633, US Patent 1983.
    [87]
    S. I. Zones, L. T. Yuen, Y. Nakagawa, R. A. Van Nordstrand, S.D. Toto, An Unexpected and Highly Versatile New Zeolite Synthesis Route Leading to Large Pore Alumino and Borosilicate Sieves in Proceedings from the 9th International Zeolite Conference I and Ii, Boston, MA, 1993.
    [88]
    B.M. Lok, T.R. Cannan, C.A. Messina, Zeolites 3 (1983) 282-291.
    [89]
    Q. Lin, S. Liu, S. Xu, P. Yao, M. Pei, H. Xu, et al., Chem. Eng. J. 446 (2022) 137283.
    [90]
    C. Sun, Y. Wang, H. Chen, X. Wang, C. Wang, X. Zhang, Catal. Today 355 (2020) 188-198.
    [91]
    Y. Kamimura, K. Iyoki, S.P. Elangovan, K. Itabashi, A. Shimojima, T. Okubo, Microporous Mesoporous Mater. 163 (2012) 282-290.
    [92]
    Q. Li, W. Cong, C. Xu, S. Zhang, F. Wang, D. Han, et al., CrystEngComm 23 (2021) 8641-8649.
    [93]
    F. Mirshafiee, R. Khoshbin, R. Karimzadeh, J. Clean. Prod. 361 (2022) 132159.
    [94]
    S. Zhong, S. Song, B Wang, N. Bu, X. Ding, R. Zhou, et al., Microporous Mesoporous Mater. 263 (2018) 11-20.
    [95]
    R. Wu, J. Han, Y. Wang, M. Chen, P. Tian, X. Zhou, et al., Inorg. Chem. Front. 9 (2022) 5766-5773.
    [96]
    R. Zhou, Y. Li, B. Liu, N. Hu, X.S. Chen, H. Kita, Microporous Mesoporous Mater. 179 (2013) 128-135.
    [97]
    K. Iyoki, M. Takase, K. Itabashi, K. Muraoka, W. Chaikittisilp, T. Okubo, Microporous Mesoporous Mater. 215 (2015) 191-198.
    [98]
    K. Muraoka, Y. Sada, A. Shimojima, W. Chaikittisilp, T. Okubo, Chem. Sci. 10 (2019) 8533-8540.
    [99]
    M. Itakura, I. Goto, A. Takahashi, T. Fujitani, Y. Ide, M. Sadakane, et al., Microporous Mesoporous Mater. 144 (2011) 91-96.
    [100]
    K. Mlekodaj, M. Bernaue, J.E. Olszowka, P. Klein, V. Pashkova, J. Dedecek, Chem. Mater. 33 (2021) 1781-1788.
    [101]
    G.T.M. Kadja, I.R. Kadir, A.T.N. Fajar, V. Suendo, R.R. Mukti, RSC Adv. 10 (2020) 5304-5315.
    [102]
    B.N. Bhadra, J.Y. Song, N.A. Khan, J.W. Junkim, T.W. Kim, C.U. Kim, et al., J. Catal. 365 (2018) 94-104.
    [103]
    S.H. Park, K.C. Kemp, J. Hong, J.G. Min, S.B. Hong, Chem. Sci. 12 (2021) 10371-10379.
    [104]
    Q. Yu, X. Meng, J. Liu, C. Li, Q. Cui, Microporous Mesoporous Mater. 181 (2013) 192-200.
    [105]
    J. Meng, C. Li, X. Chen, C. Song, C. Liang, Microporous Mesoporous Mater. 309 (2020) 110565.
    [106]
    J. Kim, H. Ham, H.S. Jung, Y. Wang, Y.L. He, N. Tsubaki, et al., Catal. Sci. Technol. 8 (2018) 3060-3072.
    [107]
    S. Dai, Y. Tan, Y. Yang, L. Zhu, B. Liu, Y. Du, et al., CrystEngComm 24 (2022) 6987-6995.
    [108]
    D. Ma, W. Fu, C. Liu, J. Liang, Z. Wang, W. Yang, Microporous Mesoporous Mater. 346 (2022) 112283.
    [109]
    Y. Wang, P. Bai, Z. Jin, Y. Li, Y. Li, W. Shi, et al., Inorg. Chem. Front. 6 (2019) 1785-1792.
    [110]
    N. Sun, H. Wang, Y. Ma, Z. Yang, L. Kang, China Pet. Process. Petrochem. Technol. 21 (2019) 58-66.
    [111]
    X. Zhang, M. Yang, P. Tian, Z. Liu, Chem. J. Chin. Univ. 38 (2022) 1-8.
    [112]
    Z. Chen, H. Zhang, L. Gan, X. Wu, B. Liu, T. Gui, et al., J. Membr. Sci. 635 (2021) 119465.
    [113]
    L. Tang, K. G. Haw, P. He, Q. Fang, S. Qiu, V. Valtchev, Inorg. Chem. Front. 6 (2019) 3097-3103.
    [114]
    Y. Zhang, Y. Liu, L. Sun, L. Zhang, J. Xu, F. Deng, et al., Chem. Eur J. 24 (2018) 6595-6605.
    [115]
    S. Inagaki, Y. Tsuboi, Y. Nishita, T. Syahylah, T. Wakihara, Y. Kubota, Chem. Eur J. 19 (2013) 7780-7786.
    [116]
    E. Xing, Y. Shi, A. Zheng, J. Zhang, X. Gao, D. Liu, et al., Ind. Eng. Chem. Res. 54 (2015) 3123-3135.
    [117]
    T.G. Christopher, J. Raymond, D. Kinrade, Angew. Chem. Int. Ed. 46 (2007) 8148-8152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (136) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return