Volume 9 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Jiaxin Li, Shuai Zhang, Yumeng Hua, Yichao Lin, Xin Wen, Ewa Mijowska, Tao Tang, Xuecheng Chen, Rodney S. Ruoff. Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al) and its application for high-performance Zn-ion capacitor. Green Energy&Environment, 2024, 9(7): 1138-1150. doi: 10.1016/j.gee.2023.01.002
Citation: Jiaxin Li, Shuai Zhang, Yumeng Hua, Yichao Lin, Xin Wen, Ewa Mijowska, Tao Tang, Xuecheng Chen, Rodney S. Ruoff. Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al) and its application for high-performance Zn-ion capacitor. Green Energy&Environment, 2024, 9(7): 1138-1150. doi: 10.1016/j.gee.2023.01.002

Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al) and its application for high-performance Zn-ion capacitor

doi: 10.1016/j.gee.2023.01.002
  • It is of great scientific and economic value to recycle waste poly (ethylene terephthalate) (PET) into high-value PET-based metal organic frameworks (MOFs) and further convert it into porous carbon for green energy storage applications. In the present study, a facile and cost-effective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al) with a 100% conversation, then the MOF-derived porous carbon was assembled into electrodes for high-performance supercapacitors. The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m2 g-1 and unique accordion-like structure with hierarchical porosity. Benefit to these advantageous characters, the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g-1 at the current density of 0.5 A g-1 and good rate capability of 73.6% capacitance retention at 20 A g-1 in 6 mol L-1 KOH electrolyte. Furthermore, the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g-1 at 0.1 A g-1, excellent cycling stability of 92.2% capacitance retention after 10 000 cycles and ultra-high energy density of 150.3 Wh kg-1 at power density of 90 W kg-1 in 3 mol L-1 ZnSO4 electrolyte. It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF, and further expands the applications of MOF-derived carbons for high-performance energy storage devices, so it is conducive to both pollution alleviation and sustainable economic development.

     

  • loading
  • [1]
    A.F. Sousa, R. Patrício, Z. Terzopoulou, D.N. Bikiaris, T. Stern, J. Wenger, K. Loos, N. Lotti, V. Siracusa, A. Szymczyk, S. Paszkiewicz, K.S. Triantafyllidis, A. Zamboulis, M.S. Nikolic, P. Spasojevic, S. Thiyagarajan, D.S. Van Es, N. Guigo, Green Chem. 23(2021)8795-8820.
    [2]
    E. Cho, S.Y. Lee, J.W. Choi, S.H. Kim, K.W. Jung, Seper. Purif. Technol. 279(2021)119719.
    [3]
    C. Song, B. Zhang, L. Hao, J. Min, N. Liu, R. Niu, J. Gong, T. Tang, Green Energy Environ. 7(2022)411-422.
    [4]
    F. Li, X. Dai, W. Qi, Green Energy Environ. 5(2020)453-460.
    [5]
    M. Volanti, D. Cespi, F. Passarini, E. Neri, F. Cavani, P. Mizsey, D. Fozer, Green Chem. 21(2019)885-896.
    [6]
    A.M. Al-Enizi, M. Ubaidullah, J. Ahmed, T. Ahamad, T. Ahmad, S.F. Shaikh, M. Naushad, Compos. Pt. B-Eng. 183(2020)107655.
    [7]
    A.K. Singh, R. Bedi, B.S. Kaith, Compos. Pt. B-Eng. 219(2021)108928.
    [8]
    M. Asensio, P. Esfandiari, K. Nunez, J.F. Silva, A. Marques, J.C. Merino, J.M. Pastor, Compos. Pt. B Eng. 200(2020)108365.
    [9]
    P. Benyathiar, P. Kumar, G. Carpenter, J. Brace, D.K. Mishra, Polymers 14(2022)2366.
    [10]
    N.a.S. Suhaimi, F. Muhamad, N.A. Abd Razak, E. Zeimaran, Polym. Eng. Sci. 62(2022)2355-2375.
    [11]
    J. Chu, Y. Cai, C. Li, X. Wang, Q. Liu, M. He, Waste. Manag. 124(2021)273-282.
    [12]
    M.D.D. Caputto, R. Navarro, J.L. Valentin, A. Marcos-Fernandez, J. Polym. Sci.(2022)1-15.
    [13]
    S.H. Lo, D.S. Raja, C.W. Chen, Y.H. Kang, J.J. Chen, C.H. Lin, Dalton Trans. 45(2016)9565-9573.
    [14]
    T.K. Vo, J.H. Kim, H.T. Kwon, J. Kim, J. Ind. Eng. Chem. 80(2019)345-351.
    [15]
    T. Yoshioka, T. Motoki, A. Okuwaki, Ind. Eng. Chem. Res. 40(2001)75-79.
    [16]
    Manju, P.K. Roy, A. Ramanan, C. Rajagopal, Mater. Lett. 106(2013)390-392.
    [17]
    F. Zhang, S.Y. Chen, S.Q. Nie, J. Luo, S.M. Lin, Y. Wang, H. Yang, Polymers 11(2019)1529.
    [18]
    X. Dyosiba, J.W. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, M.S. Onyango, Ind. Eng. Chem. Res. 58(2019)17010-17016.
    [19]
    W.P.R. Deleu, I. Stassen, D. Jonckheere, R. Ameloot, D.E. De Vos, J. Mate. Chem. A 4(2016)9519-9525.
    [20]
    Y.L. Wen, X.G. Liu, X. Wen, X.C. Chen, K. Szymanska, R. Dobrzynska, E. Mijowska, Compos. Pt. B-Eng. 199(2020)108256.
    [21]
    Y.X. Zhang, L. Sun, L.K. Zhang, X.W. Li, J.L. Gu, H.C. Si, L. Wu, Y. Shi, C. Sun, Y.H. Zhang, Compos. Pt. B-Eng. 182(2020)107611.
    [22]
    L. Sun, Y.Y. Cai, M.K. Haider, D. Miyagi, C.H. Zhu, I.S. Kim, Compos. Pt. B-Eng. 236(2022)109812.
    [23]
    C.W. Ye, L. Xu, Compos. Pt. B-Eng. 225(2021)109256.
    [24]
    B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Ame. Chem. Soc. 130(2008)5390-5391.
    [25]
    H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, J. Power Sources 285(2015)281-290.
    [26]
    W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, L. Guo, ACS Sustain. Chem. Eng. 5(2017)4144-4153.
    [27]
    K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, ACS Nano 8(2014)7451-7457.
    [28]
    D. Paszun, T. Spychaj, Ind. Eng.Chem. Res. 36(1997)1373-1383.
    [29]
    F. Liu, J. Cao, Z. Yang, W. Xiong, Z. Xu, P. Song, M. Jia, S. Sun, Y. Zhang, X. Zhong, J. Colloid Interf. Sci. 581(2021)195-204.
    [30]
    J.X. Li, B. Michalkiewicz, J.K. Min, C.D. Ma, X.C. Chen, J. Gong, E. Mijowska, T. Tang, Chem. Eng. J. 360(2019)250-259.
    [31]
    X. Liu, Y. Wen, X. Chen, A. Dymerska, R. Wrobel, J. Zhu, X. Wen, Z. Liu, E. Mijowska, ACS Appl. Energy Mater. 3(2020)8562-8572.
    [32]
    X. Liu, C. Ma, J. Li, B. Zielinska, R.J. Kalenczuk, X. Chen, P.K. Chu, T. Tang, E. Mijowska, J. Power Sources 412(2019)1-9.
    [33]
    X. Liu, C. Ma, Y. Wen, X. Chen, X. Zhao, T. Tang, R. Holze, E. Mijowska, Carbon 171(2021)819-828.
    [34]
    Y. Zhou, Q. Huang, C.T.J. Low, R.I. Walton, T. Mcnally, C. Wan, New J. Chem 43(2019)5632-5641.
    [35]
    Y. Xi, J. Cao, J. Li, P. Zhang, Y. Zhu, W. Han, J. Energy Storage 37(2021)102470.
    [36]
    C. Cheng, S. He, C. Zhang, C. Du, W. Chen, Electrochim. Acta 290(2018)98-108.
    [37]
    Y. Li, S. Liu, Y. Liang, Y. Xiao, H. Dong, M. Zheng, H. Hu, Y. Liu, ACS Sustain. Chem. Eng. 7(2019)13827-13835.
    [38]
    Z. Xing, L. Zhang, G. Pang, J. Xu, X. Wang, C. Yang, Diam. Relat. Mater. 120(2021)13287-13835.
    [39]
    J. Li, X. Chen, J. Gong, J. Zhu, E. Mijowska, Diam. Relat. Mater. 105(2020)107802.
    [40]
    W. Du, J. Xiao, H. Geng, Y. Yang, Y. Zhang, E.H. Ang, M. Ye, C.C. Li, J. Power Sources 450(2020)227716.
    [41]
    J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Adv. Energy Mater. 10(2020)2001705.
    [42]
    L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng, M. Ling, M. Fan, T. Ma, Carbon 187(2022)145-152.
    [43]
    L. Wang, C. Yang, S. Dou, S. Wang, J. Zhang, X. Gao, J. Ma, Y. Yu, Electrochim. Acta 219(2016)592-603.
    [44]
    Z. Pan, Z. Lu, L. Xu, D. Wang, Appl. Surf. Sci. 510(2020)145384.
    [45]
    S. Umezawa, T. Douura, K. Yoshikawa, Y. Takashima, M. Yoneda, K. Gotoh, V. Stolojan, S.R.P. Silva, Y. Hayashi, D. Tanaka, Carbon 184(2021)418-425.
    [46]
    Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui, D. Wei, R. Zheng, J. Liu, Chem. Eng. J. 387(2020)124161.
    [47]
    P. Mehra, C. Singh, I. Cherian, A. Giri, A. Paul, ACS Appl. Energy Mater. 4(2021)4416-4427.
    [48]
    H.T. Sun, L. Mei, J.F. Liang, Z.P. Zhao, C. Lee, H.L. Fei, M.N. Ding, J. Lau, M.F. Li, C. Wang, X. Xu, G.L. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X.F. Duan, Science 356(2017)599-604.
    [49]
    Z. Li, D. Chen, Y. An, C. Chen, L. Wu, Z. Chen, Y. Sun, X. Zhang, Energy Storage Mater. 28(2020)307-314.
    [50]
    Y.Q. Wang, B. Fugetsu, Z.P. Wang, W. Gong, I. Sakata, S. Morimoto, Y. Hashimoto, M. Endo, M. Dresselhaus, M. Terrones, Sci. Rep.-UK 7(2017)40259.
    [51]
    F. Zhang, C. Wang, J. Pan, F. Tian, S. Zeng, J. Yang, Y. Qian, Mater. Today Energy 17(2020)100443.
    [52]
    J. Li, J. Zhang, L. Yu, J. Gao, X. He, H. Liu, Y. Guo, G. Zhang, Energy Storage Mater. 42(2021)705-714.
    [53]
    P. Liu, W. Liu, Y. Huang, P. Li, J. Yan, K. Liu, Energy Storage Mater. 25(2020)858-865.
    [54]
    P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu, Y. Liu, M. Zheng, Y. Xiao, X. Lu, Y. Liang, Electrochim. Acta 327(2019)134999.
    [55]
    Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei, Y. Ma, J. Li, M. Wang, W. Li, W. Zeng, Adv. Electron. Mater. 5(2019)1900537.
    [56]
    S. Liu, X. Chen, Q. Zhang, J. Zhou, Z. Cai, A. Pan, ACS Appl. Mater. Interfaces 11(2019)36676-36684.
    [57]
    H. Wang, M. Wang, Y. Tang, Energy Storage Mater. 13(2018)1-7.
    [58]
    M.Z. Iqbal, M.M. Faisal, M. Sulman, S.R. Ali, A.M. Afzal, M.A. Kamran, T. Alharbi, J. Energy Storage 29(2020)101324.
    [59]
    Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji, H. Pang, C. Yu, J. Qiu, Nano Energy 66(2019)104132.
    [60]
    J. Zhang, S. Wei, H. Wang, H. Liu, Y. Zhang, S. Liu, Z. Wang, X. Lu, Chemsuschem 14(2021)2076-2083.
    [61]
    X. Fan, X. Wen, Y. Tang, W. Zhou, K. Xiang, H. Chen, Electrochim. Acta 400(2021)139425.
    [62]
    L. Han, H. Huang, J. Li, X. Zhang, Z. Yang, M. Xu, L. Pan, J. Mater. Chem.A 8(2020)15042-15050.
    [63]
    L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang, F. Kang, Energy Storage Mater. 13(2018)96-102.
    [64]
    C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu, Z. Liu, H.F. Wang, C. Li, Q. Xu, Adv. Mater.(2021)2101698.
    [65]
    W. Jian, W. Zhang, X. Wei, B. Wu, W. Liang, Y. Wu, J. Yin, K. Lu, Y. Chen, H.N. Alshareef, X. Qiu, Adv. Funct. Mater. 32(2022)2209914.
    [66]
    Z. Xu, R. Ma, X. Wang, Energy Storage Mater. 46(2022)233-242.
    [67]
    L. Wang, M. Peng, J. Chen, X. Tang, L. Li, T. Hu, K. Yuan, Y. Chen, ACS Nano 16(2022)2877-2888.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (200) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return