Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Dan Yang, Ying Yang, Haoran Du, Yongsheng Ji, Mingyuan Ma, Yujun Pan, Xiaoqun Qi, Quan Sun, Kaiyuan Shi, Long Qie. An efficient recycling strategy to eliminate the residual “impurities” while heal the damaged structure of spent graphite anodes. Green Energy&Environment, 2024, 9(6): 1027-1034. doi: 10.1016/j.gee.2022.11.003
Citation: Dan Yang, Ying Yang, Haoran Du, Yongsheng Ji, Mingyuan Ma, Yujun Pan, Xiaoqun Qi, Quan Sun, Kaiyuan Shi, Long Qie. An efficient recycling strategy to eliminate the residual “impurities” while heal the damaged structure of spent graphite anodes. Green Energy&Environment, 2024, 9(6): 1027-1034. doi: 10.1016/j.gee.2022.11.003

An efficient recycling strategy to eliminate the residual “impurities” while heal the damaged structure of spent graphite anodes

doi: 10.1016/j.gee.2022.11.003
  • The recycling of graphite from spent lithium-ion batteries (LIBs) is overlooked due to its relatively low added value and the lack of efficient recovering methods. To reuse the spent graphite anodes, we need to eliminate their useless components (mainly the degraded solid electrolyte interphase, SEI) and reconstruct their damaged structure. Herein, a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes. The regenerated graphite, which is revitalized by calcination treatment and acid leaching, delivers superb rate performance and a high specific capacity of 370 mAh g-1 (∼99% of its theoretical capacity) after 100 cycles at 0.1 C, superior to the commercial graphite anodes. The improved electrochemical performance could be attributed to unchoked Li+ transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite. This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual “impurity” and provides a facile method for the efficient regeneration of graphite anodes.

     

  • loading
  • [1]
    Lithium-ion Battery Market Size, Share & Trends Analysis Report by Product (LCO, LFP, NCA, LMO, LTO, Lithium Nickel Manganese Cobalt), by Application, by Region, and Segment Forecasts, 2021 – 2028, https://www.grandviewresearch.com/industry-analysis/lithium-ion-battery-market.
    [2]
    H.E. Melin, M.A. Rajaeifar, A.Y. Ku, A. Kendall, G. Harper, O. Heidrich, Science 373 (2021) 384-387.
    [3]
    S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed. 60 (2021) 2208-2220.
    [4]
    X. Ma, M. Chen, Z. Zheng, D. Bullen, J. Wang, C. Harrison, E. Gratz, Y. Lin, Z. Yang, Y. Zhang, F. Wang, D. Robertson, S.-B. Son, I. Bloom, J. Wen, M. Ge, X. Xiao, W.-K. Lee, M. Tang, Q. Wang, J. Fu, Y. Zhang, B.C. Sousa, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Joule 5 (2021) 2955-2970.
    [5]
    M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Joule 3 (2019) 2622-2646.
    [6]
    X. Ma, L. Azhari, Y. Wang, Chem 7 (2021) 2843-2847.
    [7]
    E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chem. Rev. 120 (2020) 7020-7063.
    [8]
    G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature 575 (2019) 75-86.
    [9]
    J.J. Roy, S. Rarotra, V. Krikstolaityte, K.W. Zhuoran, Y.D.-I. Cindy, X.Y. Tan, M. Carboni, D. Meyer, Q. Yan, M. Srinivasan, Adv. Mater. 34 (2022) 2103346.
    [10]
    R.E. Ciez, J.F. Whitacre, Nat. Sustain. 2 (2019) 148-156.
    [11]
    J. Xiao, J. Li, Z. Xu, Environ. Sci. Technol. 51 (2017) 11960-11966.
    [12]
    H. Dang, B. Wang, Z. Chang, X. Wu, J. Feng, H. Zhou, W. Li, C. Sun, ACS Sustain. Chem. Eng. 6 (2018) 13160-13167.
    [13]
    Z. Liang, C. Cai, G. Peng, J. Hu, H. Hou, B. Liu, S. Liang, K. Xiao, S. Yuan, J. Yang, ACS Sustain. Chem. Eng. 9 (2021) 5750-5767.
    [14]
    L.-P. He, S.-Y. Sun, Y.-Y. Mu, X.-F. Song, J.-G. Yu, ACS Sustain. Chem. Eng. 5 (2016) 714-721.
    [15]
    P. Xu, Z. Yang, X. Yu, J. Holoubek, H. Gao, M. Li, G. Cai, I. Bloom, H. Liu, Y. Chen, K. An, K.Z. Pupek, P. Liu, Z. Chen, ACS Sustain. Chem. Eng. 9 (2021) 4543-4553.
    [16]
    B. Gangaja, S. Nair, D. Santhanagopalan, ACS Sustain. Chem. Eng. 9 (2021) 4711-4721.
    [17]
    B.K. Biswal, U.U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang, B. Cao, ACS Sustain. Chem. Eng. 6 (2018) 12343-12352.
    [18]
    Graphite prices show resilience amid growing demand-side concerns, https://www.fastmarkets.com/insights/graphite-prices-show-resilience-amid-growing-demand-side-concerns.
    [19]
    S. Natarajan, V. Aravindan, Adv. Energy Mater. 10 (2020) 2002238.
    [20]
    M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10 (1998) 725-763.
    [21]
    J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustain. Energ. Fuels 4 (2020) 5387-5416.
    [22]
    E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc. 144 (1997) L208-L210.
    [23]
    X. Yu, A. Manthiram, Energy Environ. Sci. 11 (2018) 527-543.
    [24]
    X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Green Energy & Environment 5 (2020) 22-36.
    [25]
    D.J. Xiong, L.D. Ellis, K.J. Nelson, T. Hynes, R. Petibon, J.R. Dahn, J. Electrochem. Soc. 163 (2016) A3069-A3077.
    [26]
    M. Metzger, H.A. Gasteiger, Energy Environ. Mater. 5 (2022) 688-692.
    [27]
    S.-Y. Sun, N. Yao, C.-B. Jin, J. Xie, X.-Y. Li, M.-Y. Zhou, X. Chen, B.-Q. Li, X.-Q. Zhang, Q. Zhang, Angew. Chem. Int. Ed. (2022) e202208743.
    [28]
    S.K. Heiskanen, J. Kim, B.L. Lucht, Joule 3 (2019) 2322-2333.
    [29]
    D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics 148 (2002) 405-416.
    [30]
    H. Wang, Y. Huang, C. Huang, X. Wang, K. Wang, H. Chen, S. Liu, Y. Wu, K. Xu, W. Li, Electrochim. Acta 313 (2019) 423-431.
    [31]
    L. Ye, C. Wang, L. Cao, H. Xiao, J. Zhang, B. Zhang, X. Ou, Green Energy & Environment 6 (2021) 725-733.
    [32]
    B. Niu, J. Xiao, Z. Xu, J. Hazard. Mater. 439 (2022).
    [33]
    G.V. Zhuang, K. Xu, H. Yang, T.R. Jow, P.N. Ross, J. Phys. Chem. B 109 (2005) 17567-17573.
    [34]
    F. Wu, S. Fang, M. Kuenzel, A. Mullaliu, J.-K. Kim, X. Gao, T. Diemant, G.-T. Kim, S. Passerini, Joule 5 (2021) 2177-2194.
    [35]
    C. Yan, X.-B. Cheng, Y. Tian, X. Chen, X.-Q. Zhang, W.-J. Li, J.-Q. Huang, Q. Zhang, Adv. Mater. 30 (2018) 1707629.
    [36]
    T. Szabo, O. Berkesi, I. Dekany, Carbon 43 (2005) 3186-3189.
    [37]
    S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, Carbon 105 (2016) 52-76.
    [38]
    S. Rahim, A. Naveed, A. R. Amir, C. Yang, Y. Chen, J. Hu, X. Zhao, Y. Peng, Z. Deng, Acta Phys.-Chim. Sin. 35 (2019) 1382-1390.
    [39]
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401.
    [40]
    A.C. Ferrari, Solid State Commun. 143 (2007) 47-57.
    [41]
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095-14107.
    [42]
    O.N. Shornikova, E.V. Kogan, N.E. Sorokina, V.V. Avdeev, Russ. J. Phys. Chem. A 83 (2009) 1022-1025.
    [43]
    L. Qie, W.-M. Chen, Z.-H. Wang, Q.-G. Shao, X. Li, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Adv. Mater. 24 (2012) 2047-2050.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (189) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return