Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Kun Guo, Ning Li, Lipiao Bao, Xing Lu. Fullerenes and derivatives as electrocatalysts: Promises and challenges. Green Energy&Environment, 2024, 9(1): 7-27. doi: 10.1016/j.gee.2022.11.002
Citation: Kun Guo, Ning Li, Lipiao Bao, Xing Lu. Fullerenes and derivatives as electrocatalysts: Promises and challenges. Green Energy&Environment, 2024, 9(1): 7-27. doi: 10.1016/j.gee.2022.11.002

Fullerenes and derivatives as electrocatalysts: Promises and challenges

doi: 10.1016/j.gee.2022.11.002
  • Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies. Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites. Distinct from sp2-conjugated graphene and carbon nanotube, fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community. For instance, the well-defined atomic and molecular structures, the good electron affinity to tune the electronic structures of other substances, the intermolecular self-assembly into superlattices, and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon materials. As increasing studies are being reported on this intriguing topic, it is necessary to provide a state-of-the-art overview of the recent progress. This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives. The content is structured according to the composition and structure of fullerene, including intact fullerene (e.g., fullerene composite and superlattices) and fullerene derivatives (e.g., doped, endohedral, and disintegrated fullerene). The synthesis, characterization, catalytic mechanisms, and deficiencies of these fullerene-based materials are explicitly elaborated. We conclude it by sharing our perspectives on the key aspects that future efforts shall consider.

     

  • loading
  • [1]
    A.A. Tountas, G.A. Ozin, M.M. Sain, Nat. Catal. 4 (2021) 934-942.
    [2]
    F. Ueckerdt, C. Bauer, A. Dirnaichner, J. Everall, R. Sacchi, G. Luderer, Nat. Clim. Chang. 11 (2021) 384-393.
    [3]
    S. Chu, Y. Cui, N. Liu, Nat. Mater. 16 (2016) 16-22.
    [4]
    J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, J.K. Norskov, Nat. Mater. 16 (2016) 70-81.
    [5]
    Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 3 (2018) 279-289.
    [6]
    V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16 (2016) 57-69.
    [7]
    J.P. Lemmon, Nature 525 (2015) 447-449.
    [8]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355 (2017) eaad4998.
    [9]
    S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Green Energy Environ. 6 (2021) 458-478.
    [10]
    J.-T. Ren, Y. Yao, Z.-Y. Yuan, Green Energy Environ. 6 (2021) 620-643.
    [11]
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760-764.
    [12]
    S. Li, S.-H. Ho, T. Hua, Q. Zhou, F. Li, J. Tang, Green Energy Environ. 6 (2021) 644-659.
    [13]
    D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361-365.
    [14]
    Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang, N. Yang, D. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. Zhao, Y. Li, D. Wang, Nat. Chem. 10 (2018) 924-931.
    [15]
    L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang, H. Duan, L. Dai, J. Shui, Nat. Commun. 9 (2018) 3819.
    [16]
    Y. Jia, L.Z. Zhang, L.Z. Zhuang, H.L. Liu, X.C. Yan, X. Wang, J.D. Liu, J.C. Wang, Y.R. Zheng, Z.H. Xiao, E. Taran, J. Chen, D.J. Yang, Z.H. Zhu, S.Y. Wang, L.M. Dai, X.D. Yao, Nat. Catal. 2 (2019) 688-695.
    [17]
    S. Wang, J. Bai, M.T. Innocent, Q. Wang, H. Xiang, J. Tang, M. Zhu, Green Energy Environ. 7 (2022) 578-605.
    [18]
    R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, A. Matsuda, Mater. Today 39 (2020) 47-65.
    [19]
    L.H. Zhang, Y. Shi, Y. Wang, N.R. Shiju, Adv. Sci. 7 (2020) 1902126.
    [20]
    J. Zhu, S. Mu, Adv. Funct. Mater. 30 (2020) 2001097.
    [21]
    C. Hu, R. Paul, Q. Dai, L. Dai, Chem. Soc. Rev. 50 (2021) 11785-11843.
    [22]
    L. Zhang, C.Y. Lin, D. Zhang, L. Gong, Y. Zhu, Z. Zhao, Q. Xu, H. Li, Z. Xia, Adv. Mater. 31 (2019) 1805252.
    [23]
    W.H. Green, S.M. Gorun, G. Fitzgerald, P.W. Fowler, A. Ceulemans, B.C. Titeca, J. Phys. Chem. 100 (1996) 14892-14898.
    [24]
    M.D. Diener, J.M. Alford, Nature 393 (1998) 668-671.
    [25]
    Y. Yang, F. Arias, L. Echegoyen, L.P.F. Chibante, S. Flanagan, A. Robertson, L.J. Wilson, J. Am. Chem. Soc. 117 (1995) 7801-7804.
    [26]
    M. Yoshida, J.-I. Aihara, Phys. Chem. Chem. Phys. 1 (1999) 227-230.
    [27]
    K.N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, A.A. Kopyrin, J. Chem. Eng. Data 55 (2010) 13-36.
    [28]
    J. Li, M. Chen, S. Zhou, H. Li, J. Hao, Chem. Soc. Rev. 51 (2022) 3226-3242.
    [29]
    D.M. Guldi, B.M. Illescas, C.M. Atienza, M. Wielopolski, N. Martin, Chem. Soc. Rev. 38 (2009) 1587-1597.
    [30]
    A. Hirsch, Nat. Mater. 9 (2010) 868-871.
    [31]
    Y. Pan, X. Liu, W. Zhang, Z. Liu, G. Zeng, B. Shao, Q. Liang, Q. He, X. Yuan, D. Huang, M. Chen, Appl. Catal. B: Environ. 265 (2020) 118579.
    [32]
    J. Friedl, M.A. Lebedeva, K. Porfyrakis, U. Stimming, T.W. Chamberlain, J. Am. Chem. Soc. 140 (2018) 401-405.
    [33]
    F.A. El Diwany, B.A. Ali, E.N. El Sawy, N.K. Allam, Chem. Commun. 56 (2020) 7569-7572.
    [34]
    Z. Jiang, Y. Zhao, X. Lu, J. Xie, J. Energy Chem. 55 (2021) 70-79.
    [35]
    L. Yu, L. Tang, W. Guo, C. Li, D. Shin, Z. Liu, Y. Lin, Matter 5 (2022) 1909-1923.
    [36]
    K. Takeyasu, M. Furukawa, Y. Shimoyama, S.K. Singh, J. Nakamura, Angew. Chem. Int. Ed. 60 (2021) 5121-5124.
    [37]
    Q. Lai, J. Zheng, Z. Tang, D. Bi, J. Zhao, Y. Liang, Angew. Chem. Int. Ed. 59 (2020) 11999-12006.
    [38]
    N.K. Gupta, A. Pashigreva, E.A. Pidko, E.J. Hensen, L. Mleczko, S. Roggan, E.E. Ember, J.A. Lercher, Angew. Chem. Int. Ed. 55 (2016) 1728-1732.
    [39]
    A.V. Baskar, M.R. Benzigar, S.N. Talapaneni, G. Singh, A.S. Karakoti, J. Yi, A.a.H. Al-Muhtaseb, K. Ariga, P.M. Ajayan, A. Vinu, Adv. Funct. Mater. 32 (2022) 2106924.
    [40]
    T. Xu, W. Shen, W. Huang, X. Lu, Mater. Today Nano 11 (2020) 100081.
    [41]
    S.S. Babu, H. Mohwald, T. Nakanishi, Chem. Soc. Rev. 39 (2010) 4021-4035.
    [42]
    M. Chen, R. Guan, S. Yang, Adv. Sci. 6 (2019) 1800941.
    [43]
    S. Sinha, H. Kim, A.W. Robertson, Mater. Today Adv. 12 (2021) 100169.
    [44]
    A. Zieleniewska, F. Lodermeyer, A. Roth, D.M. Guldi, Chem. Soc. Rev. 47 (2018) 702-714.
    [45]
    E.M. Perez, N. Martin, Chem. Soc. Rev. 44 (2015) 6425-6433.
    [46]
    M.R. Ceron, C. Zhan, P.G. Campbell, M.C. Freyman, C. Santoyo, L. Echegoyen, B.C. Wood, J. Biener, T.A. Pham, M.M. Biener, ACS Appl. Mater. Interfaces 11 (2019) 28818-28822.
    [47]
    J. Zheng, L. Huang, C.H. Cui, Z.C. Chen, X.F. Liu, X. Duan, X.Y. Cao, T.Z. Yang, H. Zhu, K. Shi, P. Du, S.W. Ying, C.F. Zhu, Y.G. Yao, G.C. Guo, Y. Yuan, S.Y. Xie, L.S. Zheng, Science 376 (2022) 288-292.
    [48]
    A.R. Puente Santiago, O. Fernandez-Delgado, A. Gomez, M.A. Ahsan, L. Echegoyen, Angew. Chem. Int. Ed. 60 (2021) 122-141.
    [49]
    B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov, J. Am. Chem. Soc. 127 (2005) 5308-5309.
    [50]
    T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (2007) 100-102.
    [51]
    J. Deng, H.B. Li, J.P. Xiao, Y.C. Tu, D.H. Deng, H.X. Yang, H.F. Tian, J.Q. Li, P.J. Ren, X.H. Bao, Energy Environ. Sci. 8 (2015) 1594-1601.
    [52]
    R. Chen, C. Lin, H. Yu, Y. Tang, C. Song, L. Yuwen, H. Li, X. Xie, L. Wang, W. Huang, Chem. Mater. 28 (2016) 4300-4306.
    [53]
    L.Y. Gan, Q. Zhang, Y. Cheng, U. Schwingenschlogl, J. Phys. Chem. Lett. 5 (2014) 1445-1449.
    [54]
    Y.-H. Choi, J. Lee, A. Parija, J. Cho, S.V. Verkhoturov, M. Al-Hashimi, L. Fang, S. Banerjee, ACS Catal. 6 (2016) 6246-6254.
    [55]
    A.R. Puente Santiago, T. He, O. Eraso, M.A. Ahsan, A.N. Nair, V.S.N. Chava, T. Zheng, S. Pilla, O. Fernandez-Delgado, A. Du, S.T. Sreenivasan, L. Echegoyen, J. Am. Chem. Soc. 142 (2020) 17923-17927.
    [56]
    S. Zank, J.M. Fernandez-Garcia, A.J. Stasyuk, A.A. Voityuk, M. Krug, M. Sola, D.M. Guldi, N. Martin, Angew. Chem. Int. Ed. 61 (2022) e202112834.
    [57]
    B. Trzaskowski, L. Adamowicz, W. Beck, K. Muralidharan, P.A. Deymier, J. Phys. Chem. C 117 (2013) 19664-19671.
    [58]
    M.A. Ahsan, T. He, K. Eid, A.M. Abdullah, M.L. Curry, A. Du, A.R. Puente Santiago, L. Echegoyen, J.C. Noveron, J. Am. Chem. Soc. 143 (2021) 1203-1215.
    [59]
    Y. Feng, X. Wang, J. Huang, P. Dong, J. Ji, J. Li, L. Cao, L. Feng, P. Jin, C. Wang, Chem. Eng. J. 390 (2020) 124525.
    [60]
    A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tomanek, E.I. Kauppinen, Nat. Nanotechnol. 2 (2007) 156-161.
    [61]
    R. Gao, Q. Dai, F. Du, D. Yan, L. Dai, J. Am. Chem. Soc. 141 (2019) 11658-11666.
    [62]
    X. Chen, H. Zhang, X. Li, Mol. Catal. 502 (2021) 111383.
    [63]
    J. Wu, S. Wang, Z. Lei, R. Guan, M. Chen, P. Du, Y. Lu, R. Cao, S. Yang, Nano Res. 14 (2021) 2596-2605.
    [64]
    Z. Du, N. Jannatun, D. Yu, J. Ren, W. Huang, X. Lu, Nanoscale 10 (2018) 23070-23079.
    [65]
    J. Guan, X. Chen, T. Wei, F. Liu, S. Wang, Q. Yang, Y. Lu, S. Yang, J. Mater. Chem. A 3 (2015) 4139-4146.
    [66]
    X. Zhu, T. Zhang, D. Jiang, H. Duan, Z. Sun, M. Zhang, H. Jin, R. Guan, Y. Liu, M. Chen, H. Ji, P. Du, W. Yan, S. Wei, Y. Lu, S. Yang, Nat. Commun. 9 (2018) 4177.
    [67]
    A. Hasanzadeh, A. Khataee, M. Zarei, Y. Zhang, Sci. Rep. 9 (2019) 13780.
    [68]
    M. Gopiraman, S. Saravanamoorthy, S. Ullah, A. Ilangovan, I.S. Kim, I.M. Chung, RSC Adv. 10 (2020) 2545-2559.
    [69]
    C. Rivera-Carcamo, F. Leng, I.C. Gerber, I. Del Rosal, R. Poteau, V. Colliere, P. Lecante, D. Nechiyil, W. Bacsa, A. Corrias, M.R. Axet, P. Serp, Catal. Sci. Technol. 10 (2020) 4673-4683.
    [70]
    K.S. Bhavani, T. Anusha, J.V.S. Kumar, P.K. Brahman, Electroanalysis 33 (2020) 97-110.
    [71]
    G. Lee, J.H. Shim, H. Kang, K.M. Nam, H. Song, J.T. Park, Chem. Commun. (2009) 5036-5038.
    [72]
    K. Vinodgopal, M. Haria, D. Meisel, P. Kamat, Nano Lett. 4 (2004) 415-418.
    [73]
    K.S. Bhavani, T. Anusha, P.K. Brahman, Int. J. Hydrogen Energy 44 (2019) 25863-25873.
    [74]
    X. Zhang, L.-X. Ma, Y.-C. Zhang, Electrochim. Acta 177 (2015) 118-127.
    [75]
    G. Saianand, A.I. Gopalan, J.C. Lee, C.I. Sathish, K. Gopalakrishnan, G.E. Unni, D. Shanbhag, V. Dasireddy, J. Yi, S. Xi, A.H. Al-Muhtaseb, A. Vinu, Small 16 (2020) 1903937.
    [76]
    K.S. Bhavani, T. Anusha, J.V.S. Kumar, P.K. Brahman, Electroanalysis 33 (2021) 97-110.
    [77]
    M.K.E. Cabello, Y. Uetake, Y. Yao, S. Kuwabata, H. Sakurai, Chem. Asian J. 16 (2021) 2280-2285.
    [78]
    C.V.S. Almeida, L.E. Almagro, E.S. Valerio Neto, J. Coro, M. Suarez, K.I.B. Eguiluz, G.R. Salazar-Banda, J. Electroanal. Chem. 878 (2020) 114663.
    [79]
    Z. Bai, L. Yang, Y. Guo, Z. Zheng, C. Hu, P. Xu, Chem. Commun. 47 (2011) 1752-1754.
    [80]
    X. Zhang, L.-X. Ma, J. Power Sources 286 (2015) 400-405.
    [81]
    X. Zhang, J.-W. Zhang, P.-H. Xiang, J. Qiao, Appl. Surf. Sci. 440 (2018) 477-483.
    [82]
    Z. Lin, H. Wang, M. Lei, Electrocatalysis 10 (2019) 524-531.
    [83]
    Z. Bai, M. Shi, L. Niu, Z. Li, L. Jiang, L. Yang, J. Nanopart. Res. 15 (2013) 2061.
    [84]
    J. Coro, M. Suarez, L.S.R. Silva, K.I.B. Eguiluz, G.R. Salazar-Banda, Int. J. Hydrogen Energy 41 (2016) 17944-17959.
    [85]
    Y. Feng, R. Wang, P. Dong, X. Wang, W. Feng, J. Chen, L. Cao, L. Feng, C. He, J. Huang, ACS Appl. Mater. Interfaces 13 (2021) 48949-48961.
    [86]
    R.M. Koenig, H.R. Tian, T.L. Seeler, K.R. Tepper, H.M. Franklin, Z.C. Chen, S.Y. Xie, S. Stevenson, J. Am. Chem. Soc. 142 (2020) 15614-15623.
    [87]
    S. Stevenson, X. Liu, D.M. Sublett, Jr., R.M. Koenig, T.L. Seeler, K.R. Tepper, H.M. Franklin, X. Wang, R. Huang, X. Feng, K. Cover, D. Troya, N. Shanaiah, R.J. Bodnar, H.C. Dorn, J. Am. Chem. Soc. 143 (2021) 4593-4599.
    [88]
    X. Liu, E. Bourret, C.A. Noble, K. Cover, R.M. Koenig, R. Huang, H.M. Franklin, X. Feng, R.J. Bodnar, F. Zhang, C. Tao, D.M. Sublett, Jr., H.C. Dorn, S. Stevenson, J. Am. Chem. Soc. 144 (2022) 16287-16291.
    [89]
    C.M. Schusslbauer, M. Krug, T. Ullrich, H.M. Franklin, S. Stevenson, T. Clark, D.M. Guldi, J. Am. Chem. Soc. 144 (2022) 10825-10829.
    [90]
    M.F. Sanad, H.M. Franklin, B.A. Ali, A.R. Puente Santiago, A.N. Nair, V.S.N. Chava, O. Fernandez-Delgado, N.K. Allam, S. Stevenson, S.T. Sreenivasan, L. Echegoyen, Angew. Chem. Int. Ed. 61 (2022) e202116727.
    [91]
    N. Bharadwaj, A.S. Nair, S. Das, B. Pathak, ACS Appl. Energy Mater. 5 (2022) 3380-3391.
    [92]
    M. Sathish, K. Miyazawa, J.P. Hill, K. Ariga, J. Am. Chem. Soc. 131 (2009) 6372-6373.
    [93]
    L.K. Shrestha, Y. Yamauchi, J.P. Hill, K. Miyazawa, K. Ariga, J. Am. Chem. Soc. 135 (2013) 586-589.
    [94]
    P. Bairi, K. Minami, W. Nakanishi, J.P. Hill, K. Ariga, L.K. Shrestha, ACS Nano 10 (2016) 6631-6637.
    [95]
    P. Bairi, T. Tsuruoka, S. Acharya, Q. Ji, J.P. Hill, K. Ariga, Y. Yamauchi, L.K. Shrestha, Mater. Horiz. 5 (2018) 285-290.
    [96]
    S. Zheng, N.T. Cuong, S. Okada, T. Xu, W. Shen, X. Lu, K. Tsukagoshi, Chem. Mater. 30 (2018) 7146-7153.
    [97]
    F. Han, R. Wang, Y. Feng, S. Wang, L. Liu, X. Li, Y. Han, H. Chen, Nat. Commun. 10 (2019) 1548.
    [98]
    T. Wakahara, M. Sathish, K.I. Miyazawa, O. Ito, Fuller. Nanotub. Carbon Nanostructures 23 (2014) 509-512.
    [99]
    O. Fernandez-Delgado, A.R. Puente-Santiago, M. Cano, J.J. Giner-Casares, A.J. Metta-Magana, L. Echegoyen, Sustainable Energy Fuels 4 (2020) 2900-2906.
    [100]
    J.C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, F. Wudl, Science 269 (1995) 1554-1556.
    [101]
    B. Nuber, A. Hirsch, Chem. Commun. (1996) 1421-1422.
    [102]
    I. Lamparth, B. Nuber, G. Schick, A. Skiebe, T. Grosser, A. Hirsch, Angew. Chem. Int. Ed. 34 (1995) 2257-2259.
    [103]
    J. Goclon, B. Bankiewicz, P. Kolek, K. Winkler, Carbon 176 (2021) 198-208.
    [104]
    K.Y. Chen, S.Y. Wu, H.T. Chen, ACS Omega 5 (2020) 28870-28876.
    [105]
    N. Saeidi, M.D. Esrafili, J. Jahanbin Sardroodi, RSC Adv. 12 (2022) 3003-3012.
    [106]
    M.D. Esrafili, S. Heidari, ChemistrySelect 4 (2019) 4308-4315.
    [107]
    F. Gao, G.L. Zhao, S. Yang, J.J. Spivey, J. Am. Chem. Soc. 135 (2013) 3315-3318.
    [108]
    Q.Z. Li, J.J. Zheng, J.S. Dang, X. Zhao, Chemphyschem 16 (2015) 390-395.
    [109]
    Y. Wang, M. Jiao, W. Song, Z. Wu, Carbon 114 (2017) 393-401.
    [110]
    X. Chen, J. Chang, Q. Ke, Carbon 126 (2018) 53-57.
    [111]
    A.V. Vashchenko, A.V. Kuzmin, B.A. Shainyan, Int. J. Quantum Chem. 121 (2021) e26565.
    [112]
    S. Yang, Y. Cheng, H. Liu, X. Huang, Diam. Relat. Mater. 124 (2022) 108954.
    [113]
    S.J. Hong, H. Chun, M. Hong, B. Han, Appl. Surf. Sci. 598 (2022) 153715.
    [114]
    S.H. Noh, C. Kwon, J. Hwang, T. Ohsaka, B.J. Kim, T.Y. Kim, Y.G. Yoon, Z. Chen, M.H. Seo, B. Han, Nanoscale 9 (2017) 7373-7379.
    [115]
    M.A. Gabriel, L. Genovese, G. Krosnicki, O. Lemaire, T. Deutsch, A.A. Franco, Phys. Chem. Chem. Phys. 12 (2010) 9406-9412.
    [116]
    X. Chen, F. Ge, J. Chang, N. Lai, Int. J. Energy Res. 43 (2019) 7375-7383.
    [117]
    S. Yang, C. Zhao, R. Qu, Y. Cheng, H. Liu, X. Huang, RSC Adv. 11 (2021) 3174-3182.
    [118]
    S. Yang, Y. Cheng, H. Liu, X. Huang, Appl. Organomet. Chem. 36 (2022) e6577.
    [119]
    A.A. Popov, S. Yang, L. Dunsch, Chem. Rev. 113 (2013) 5989-6113.
    [120]
    T. He, G. Gao, L. Kou, G. Will, A. Du, J. Catal. 354 (2017) 231-235.
    [121]
    X. Chen, F. Ge, N. Lai, J. Electrochem. Soc. 167 (2020) 024515.
    [122]
    X. Chen, H. Zhang, N. Lai, J. Mater. Sci. 55 (2020) 11382-11390.
    [123]
    X. Chen, S. Huang, H. Zhang, J. Alloys Compd. 894 (2022) 162508.
    [124]
    A.R. Puente Santiago, M.F. Sanad, A. Moreno-Vicente, M.A. Ahsan, M.R. Ceron, Y.R. Yao, S.T. Sreenivasan, A. Rodriguez-Fortea, J.M. Poblet, L. Echegoyen, J. Am. Chem. Soc. 143 (2021) 6037-6042.
    [125]
    E. Andreoli, A.R. Barron, ChemSusChem 8 (2015) 2635-2644.
    [126]
    P.J. Fagan, J.C. Calabrese, B. Malone, Acc. Chem. Res. 25 (1992) 134-142.
    [127]
    A.L. Balch, K. Winkler, Coord. Chem. Rev. 438 (2021) 213623.
    [128]
    V.N. Ivanova, J. Struct. Chem. 41 (2000) 135-148.
    [129]
    A.L. Balch, K. Winkler, Chem. Rev. 116 (2016) 3812-3882.
    [130]
    K. Lee, H. Song, J.T. Park, Acc. Chem. Res. 36 (2003) 78-86.
    [131]
    H. Xiao, H. Li, X. Li, J. Jiang, J. Phys. Chem. Lett. 13 (2022) 7392-7397.
    [132]
    L. Norin, U. Jansson, C. Dyer, P. Jacobsson, S. Mcginnis, Chem. Mater. 10 (1998) 1184-1190.
    [133]
    G.L. Hou, T. Yang, M. Li, J. Vanbuel, O.V. Lushchikova, P. Ferrari, J.M. Bakker, E. Janssens, Angew. Chem. Int. Ed. 60 (2021) 27095-27101.
    [134]
    Z. Peng, Y. Hu, J. Wang, S. Liu, C. Li, Q. Jiang, J. Lu, X. Zeng, P. Peng, F.-F. Li, Adv. Energy Mater. 9 (2019) 1802928.
    [135]
    S. Zheng, J. Zhong, W. Matsuda, P. Jin, M. Chen, T. Akasaka, K. Tsukagoshi, S. Seki, J. Zhou, X. Lu, Nano Res. 11 (2018) 1917-1927.
    [136]
    B. Wang, S. Zheng, A. Saha, L. Bao, X. Lu, D.M. Guldi, J. Am. Chem. Soc. 139 (2017) 10578-10584.
    [137]
    J. Xianglin, X. Xiangjin, T. Kaluo, Chem. Commun. (2002) 750-751.
    [138]
    H.-F. Hsu, J.R. Shapley, J. Am. Chem. Soc. 118 (1996) 9192-9193.
    [139]
    E. German, G.-L. Hou, J. Vanbuel, J.M. Bakker, J.A. Alonso, E. Janssens, M.J. Lopez, Carbon 197 (2022) 535-543.
    [140]
    A.L. Balch, J.W. Lee, M.M. Olmstead, Angew. Chem. Int. Ed. 31 (1992) 1356-1358.
    [141]
    A.L. Balch, A.S. Ginwalla, J.W. Lee, B.C. Noll, M.M. Olmstead, J. Am. Chem. Soc. 116 (1994) 2227-2228.
    [142]
    A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, J. Am. Chem. Soc. 114 (1992) 10984-10985.
    [143]
    A.L. Balch, V.J. Catalano, J.W. Lee, M.M. Olmstead, S.R. Parkin, J. Am. Chem. Soc. 113 (1991) 8953-8955.
    [144]
    P.J. Fagan, J.C. Calabrese, B. Malone, J. Am. Chem. Soc. 113 (1991) 9408-9409.
    [145]
    P.J. Fagan, J.C. Calabrese, B. Malone, Science 252 (1991) 1160-1161.
    [146]
    K. Winkler, A. De Bettencourt-Dias, A.L. Balch, Chem. Mater. 12 (2000) 1386-1392.
    [147]
    A. Hayashi, A. De Bettencourt-Dias, K. Winkler, A.L. Balch, J. Mater. Chem. 12 (2002) 2116-2122.
    [148]
    A.V. Talyzin, A. Dzwilewski, M. Pudelko, Carbon 45 (2007) 2564-2569.
    [149]
    H. Nagashima, Y. Kato, H. Yamaguchi, E. Kimura, T. Kawanishi, M. Kato, Y. Saito, M. Haga, K. Itoh, Chem. Lett. 23 (1994) 1207-1210.
    [150]
    O. Fernandez-Delgado, A.R. Puente Santiago, J. Galindo Betancourth, M.F. Sanad, S.T. Sreenivasan, L. Echegoyen, Nanoscale 14 (2022) 3858-3864.
    [151]
    J. Zhuo, T. Wang, G. Zhang, L. Liu, L. Gan, M. Li, Angew. Chem. Int. Ed. 52 (2013) 10867-10870.
    [152]
    R.L. Murry, D.L. Strout, G.K. Odom, G.E. Scuseria, Nature 366 (1993) 665-667.
    [153]
    C. Cepek, A. Goldoni, S. Modesti, Phys. Rev. B 53 (1996) 7466-7472.
    [154]
    N. Swami, H. He, B.E. Koel, Phys. Rev. B 59 (1999) 8283-8291.
    [155]
    R. Felici, M. Pedio, F. Borgatti, S. Iannotta, M. Capozi, G. Ciullo, A. Stierle, Nat. Mater. 4 (2005) 688-692.
    [156]
    M. Huang, Phys. Chem. Chem. Phys. 14 (2012) 4959-4963.
    [157]
    J. Lu, P.S. Yeo, C.K. Gan, P. Wu, K.P. Loh, Nat. Nanotechnol. 6 (2011) 247-252.
    [158]
    M.N. Regueiro, P. Monceau, J.-L. Hodeau, Nature 355 (1992) 237-239.
    [159]
    A. Chuvilin, U. Kaiser, E. Bichoutskaia, N.A. Besley, A.N. Khlobystov, Nat. Chem. 2 (2010) 450-453.
    [160]
    I. Ibrahim, A. Bachmatiuk, D. Grimm, A. Popov, S. Makharza, M. Knupfer, B. Buchner, G. Cuniberti, M.H. Rummeli, ACS Nano 6 (2012) 10825-10834.
    [161]
    S. Zheng, H. Ju, X. Lu, Adv. Energy Mater. 5 (2015) 1500871.
    [162]
    G. Chen, Z. Zhuo, K. Ni, N.Y. Kim, Y. Zhao, Z. Chen, B. Xiang, L. Yang, Q. Zhang, Z. Lee, X. Wu, R.S. Ruoff, Y. Zhu, Small 11 (2015) 5296-5304.
    [163]
    S.S. Zhang, Y.J. Wu, K. Luo, B. Liu, Y. Shu, Y. Zhang, L. Sun, Y.F. Gao, M.D. Ma, Z.H. Li, B.Z. Li, P. Ying, Z.S. Zhao, W.T. Hu, V. Benavides, O.P. Chernogorova, A.V. Soldatov, J.L. He, D.L. Yu, B. Xu, Y.J. Tian, Cell Rep. Phys. Sci. 2 (2021) 100575.
    [164]
    L. Wang, B. Liu, H. Li, W. Yang, Y. Ding, S.V. Sinogeikin, Y. Meng, Z. Liu, X.C. Zeng, W.L. Mao, Science 337 (2012) 825-828.
    [165]
    Y. Shang, Z. Liu, J. Dong, M. Yao, Z. Yang, Q. Li, C. Zhai, F. Shen, X. Hou, L. Wang, N. Zhang, W. Zhang, R. Fu, J. Ji, X. Zhang, H. Lin, Y. Fei, B. Sundqvist, W. Wang, B. Liu, Nature 599 (2021) 599-604.
    [166]
    H. Tang, X. Yuan, Y. Cheng, H. Fei, F. Liu, T. Liang, Z. Zeng, T. Ishii, M.S. Wang, T. Katsura, H. Sheng, H. Gou, Nature 599 (2021) 605-610.
    [167]
    V. Krishna, N. Stevens, B. Koopman, B. Moudgil, Nat. Nanotechnol. 5 (2010) 330-334.
    [168]
    Z. Tan, K. Ni, G. Chen, W. Zeng, Z. Tao, M. Ikram, Q. Zhang, H. Wang, L. Sun, X. Zhu, X. Wu, H. Ji, R.S. Ruoff, Y. Zhu, Adv. Mater. 29 (2017) 1603414.
    [169]
    L. Hawelek, P. Wlodarczyk, A. Hudecki, M. Lis, P. Zackiewicz, K. Jurkiewicz, J. Szade, J. Kubacki, K. Balin, H.E. Fischer, A. Kolano-Burian, A. Burian, Carbon 110 (2016) 172-179.
    [170]
    L.K. Shrestha, R.G. Shrestha, Y. Yamauchi, J.P. Hill, T. Nishimura, K. Miyazawa, T. Kawai, S. Okada, K. Wakabayashi, K. Ariga, Angew. Chem. Int. Ed. 54 (2015) 951-955.
    [171]
    R.E. Franklin, Proc. Roy. Soc. Lond. 209 (1997) 196-218.
    [172]
    P.J.F. Harris, S.C. Tsang, Philos. Mag. A 76 (1997) 667-677.
    [173]
    P.J.F. Harris, Crit. Rev. Solid State Mater. Sci. 30 (2005) 235-253.
    [174]
    Q. Tang, P. Bairi, R.G. Shrestha, J.P. Hill, K. Ariga, H. Zeng, Q. Ji, L.K. Shrestha, ACS Appl. Mater. Interfaces 9 (2017) 44458-44465.
    [175]
    D. Yan, Z. Peng, W. Wang, P. Zeng, Y.Y. Huang, J. Mater. Sci. 56 (2021) 11426-11435.
    [176]
    Z. Chen, K. Mou, S. Yao, L. Liu, J. Mater. Chem. A 6 (2018) 11236-11243.
    [177]
    K. Waki, R.A. Wong, H.S. Oktaviano, T. Fujio, T. Nagai, K. Kimoto, K. Yamada, Energy Environ. Sci. 7 (2014) 1950-1958.
    [178]
    Y.F. Jiang, L.J. Yang, T. Sun, J. Zhao, Z.Y. Lyu, O. Zhuo, X.Z. Wang, Q. Wu, J. Ma, Z. Hu, ACS Catal. 5 (2015) 6707-6712.
    [179]
    L. Zhang, Q. Xu, J. Niu, Z. Xia, Phys. Chem. Chem. Phys. 17 (2015) 16733-16743.
    [180]
    H. Zhao, C. Sun, Z. Jin, D.-W. Wang, X. Yan, Z. Chen, G. Zhu, X. Yao, J. Mater. Chem. A 3 (2015) 11736-11739.
    [181]
    X.C. Yan, H.L. Liu, Y. Jia, L.Z. Zhang, W.J. Xu, X. Wang, J. Chen, D.J. Yang, X.D. Yao, Cell Rep. Phys. Sci. 1 (2020) 100083.
    [182]
    X. Wang, Y. Jia, X. Mao, L.Z. Zhang, D.B. Liu, L. Song, X.C. Yan, J. Chen, D.J. Yang, J.Z. Zhou, K. Wang, A.J. Du, X.D. Yao, Chem 6 (2020) 2009-2023.
    [183]
    Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan, S. Wang, K. Jiang, J. Su, C.W. Oloman, E.L. Gyenge, R. Ge, Z. Lu, X. Ji, L. Chen, Adv. Mater. 32 (2020) 2001300.
    [184]
    W. Yao, X. Jiang, Y. Li, C. Zhao, L. Ding, D. Sun, Y. Tang, Green Energy Environ. 7 (2022) 1111-1118.
    [185]
    J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I.S. Amiinu, S. Mu, Angew. Chem. Int. Ed. 58 (2019) 3859-3864.
    [186]
    K. Mao, W. Zhang, J. Dai, X.C. Zeng, Nanoscale 11 (2019) 19422-19428.
    [187]
    M.R. Benzigar, S. Joseph, H. Ilbeygi, D.H. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S.N. Talapaneni, A. Vinu, Angew. Chem. Int. Ed. 57 (2018) 569-573.
    [188]
    M.R. Benzigar, S. Joseph, A.V. Baskar, D.-H. Park, G. Chandra, S. Umapathy, S.N. Talapaneni, A. Vinu, Adv. Funct. Mater. 28 (2018) 1803701.
    [189]
    Z. He, P. Wei, T. Xu, Z. Guo, J. Han, T. Akasaka, K. Guo, X. Lu, Nanoscale 14 (2022) 473-481.
    [190]
    T. Xu, D. Yu, Z. Du, W. Huang, X. Lu, Chem. Eur. J. 26 (2020) 10811-10816.
    [191]
    Z. He, P. Wei, T. Xu, J. Han, X. Gao, X. Lu, Mater. Chem. Front. 5 (2021) 7873-7882.
    [192]
    Z. He, Z. Guo, K. Guo, T. Akasaka, X. Lu, C 8 (2022) 13.
    [193]
    Y.L. Shen, J.L. Jin, N. Chen, P.J. Li, T. Xu, Y.P. Xie, X. Lu, Nanoscale 13 (2021) 2534-2541.
    [194]
    Z. He, P. Wei, N. Chen, J. Han, X. Lu, Chem. Eur. J. 27 (2021) 1423-1429.
    [195]
    F. Meng, S. Wang, B. Jiang, L. Ju, H. Xie, W. Jiang, Q. Ji, Nanoscale 14 (2022) 10389-10398.
    [196]
    C. Hu, L. Dai, Adv. Mater. 31 (2019) 1804672.
    [197]
    R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang, F. Wei, A. Roy, Adv. Mater. 31 (2019) 1805598.
    [198]
    J. Zhang, L. Dai, ACS Catal. 5 (2015) 7244-7253.
    [199]
    K.-H. Wu, D. Wang, X. Lu, X. Zhang, Z. Xie, Y. Liu, B.-J. Su, J.-M. Chen, D.-S. Su, W. Qi, S. Guo, Chem 6 (2020) 1443-1458.
    [200]
    J.S. Lim, J.H. Kim, J. Woo, D.S. Baek, K. Ihm, T.J. Shin, Y.J. Sa, S.H. Joo, Chem 7 (2021) 3114-3130.
    [201]
    M. Melchionna, P. Fornasiero, M. Prato, Adv. Mater. 31 (2019) 1802920.
    [202]
    Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T.F. Jaramillo, J.K. Noerskov, Y. Cui, Nat. Catal. 1 (2018) 156-162.
    [203]
    H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J.H. Guo, P.D. Yang, B.D. Mccloskey, Nat. Catal. 1 (2018) 282-290.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (143) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return