Volume 9 Issue 5
May  2024
Turn off MathJax
Article Contents
Weikang Hu, Jiaqi Xu, Nanjie Chen, Zongcai Deng, Yuekun Lai, Dongyang Chen. Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications. Green Energy&Environment, 2024, 9(5): 899-908. doi: 10.1016/j.gee.2022.10.005
Citation: Weikang Hu, Jiaqi Xu, Nanjie Chen, Zongcai Deng, Yuekun Lai, Dongyang Chen. Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications. Green Energy&Environment, 2024, 9(5): 899-908. doi: 10.1016/j.gee.2022.10.005

Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications

doi: 10.1016/j.gee.2022.10.005
  • The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redox flow batteries. Herein, three tetrathiofulvalene (TTF) derivatives with different substitution groups, namely TTF diethyl ester (TTFDE), TTF tetramethyl ester (TTFTM), and TTF tetraethyl ester (TTFTE), are prepared and their energy storage properties are evaluated. It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups. The battery with a catholyte of 0.2 mol L-1 of TTFTE delivers a specific capacity of more than 10 Ah L-1 at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs. Li/Li+. Its capacity retention can be improved from 2.34 Ah L-1 to 3.60 Ah L-1 after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species. The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons, as revealed by the density function theory calculations. Therefore, the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active materials for non-aqueous redox flow batteries.

     

  • loading
  • [1]
    D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19-29.
    [2]
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. C. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577-3613.
    [3]
    Z. Zhang, T. Ding, Q. Zhou, Y. Sun, M. Qu, Z. Zeng, Y. Ju, L. Li, K. Wang, F. Chi, Renew. Sust. Energ. Rev. 148 (2021) 111263.
    [4]
    P. Alotto, M. Guarnieri, F. Moro, Renew. Sust. Energ. Rev. 29 (2014) 325-335.
    [5]
    A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem. 41 (2011) 1137.
    [6]
    B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
    [7]
    X. Fan, W. Sun, F. Meng, A. Xiang, J. Liu, Green Energy Environ. 3 (2018) 2-19.
    [8]
    M.A. Husain, A. Tariq, S. Hameed, Green Energy Environ. 2 (2017) 5-17.
    [9]
    X. Li, H. Zhang, Z. Mai, H. Zhang, I. Vankelecom, Energy Environ. Sci. 4 (2011) 1147-1160.
    [10]
    M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, J. Electrochem. Soc. 158 (2011) R55-R79.
    [11]
    Y. Chen, Y. Li, J. Xu, S. Chen, D. Chen, ACS Appl. Mater. Interfaces 13 (2021) 18923-18933.
    [12]
    Y. Chen, Y. Li, B. Wang, M. Lin, Z. Xie, D. Chen, Sci. China Mater. 64 (2021) 349-361.
    [13]
    J. Liu, C. Xu, Z. Chen, S. Ni, Z.X. Shen, Green Energy Environ. 3 (2018) 20-41.
    [14]
    Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Green Energy Environ. 1 (2016) 18-42.
    [15]
    B. Hu, C. Debruler, Z. Rhodes, T.L. Liu, J. Am. Chem. Soc. 139 (2017) 1207-1214.
    [16]
    J. Huang, L. Su, J.A. Kowalski, J.L. Barton, M. Ferrandon, A.K. Burrell, F.R. Brushett, L. Zhang, J. Mater. Chem. A 3 (2015) 14971-14976.
    [17]
    L. Xia, W. Huo, H. Gao, H. Zhang, F. Chu, H. Liu, Z. Tan, J. Power Sources 498 (2021) 229896.
    [18]
    L. Mu, Y. Lu, X. Wu, Y. Ding, Y.S. Hu, H. Li, L. Chen, X. Huang, Green Energy Environ. 3 (2018) 63-70.
    [19]
    Y. Zhao, J. Zhang, G. Agarwal, Z. Yu, R.E. Corman, Y. Wang, L.A. Robertson, Z. Shi, H.A. Doan, R.H. Ewoldt, I.A. Shkorb, R.S. Assary, L. Cheng, V. Srinivasan, S.J. Babinec, L. Zhang, J. Mater. Chem. A 9 (2021) 16769-16775.
    [20]
    B. Hu, H. Fan, H. Li, M. Ravivarma, J. Song, Adv. Funct. Mater. (2021) 2102734.
    [21]
    J. Huang, S. Hu, X. Yuan, Z. Xiang, M. Huang, K. Wan, J. Piao, Z. Fu, Z. Liang, Angew. Chem. Int. Ed. 60 (2021) 20921-20925.
    [22]
    S. Ahn, J.H. Jang, J. Kang, M. Na, J. Seo, V. Singh, J.M. Joo, H.R. Byon, ACS Energy Lett. 6 (2021) 3390-3397.
    [23]
    Q. Zhao, Z. Zhu, J. Chen, Adv. Mater. 29 (2017) 1607007.
    [24]
    T. Yokoji, H. Matsubara, M. Satoh, J. Mater. Chem. A 2 (2014) 19347-19354.
    [25]
    J. Chai, A. Lashgari, Z. Cao, C.K. Williams, X. Wang, J. Dong, J. Jiang, ACS Appl. Mater. Interfaces 12 (2020) 15262-15270.
    [26]
    Y. Zhu, Y. Li, Y. Qian, L. Zhang, J. Ye, X. Zhang, Y. Zhao, J. Power Sources 501 (2021) 229984.
    [27]
    F. Wudl, D. Wobschall, E.J. Hufnagel, J. Am. Chem. Soc. 94 (1972) 670-672.
    [28]
    M.R. Bryce, Adv. Mater. 11 (1999) 11-23.
    [29]
    M. Bendikov, F. Wudl, D.F. Perepichka, Chem. Rev. 104 (2004) 4891-4946.
    [30]
    Y.H. Ko, E. Kim, I. Hwang, K. Kim, Chem. Commun. 13 (2007) 1305-1315.
    [31]
    M.B. Nielsen, C. Lomholt, J. Becher, Chem. Soc.Rev. 29 (2000) 153-164.
    [32]
    J.L. Segura, N. Martin, Angew. Chem. Int. Ed. 40 (2001) 1372-1409.
    [33]
    M.R. Bryce, J. Mater. Chem. 10 (2000) 589-598.
    [34]
    D. Canevet, M. Salle, G. Zhang, D. Zhu, Chem. Commun. 40 (2009) 2245-2269.
    [35]
    M. Kato, K. Senoo, M. Yao, Y. Misaki, J. Mater. Chem. A 2 (2014) 6747-6754.
    [36]
    Y. Inatomi, N. Hojo, T. Yamamoto, S. Watanabe, Y. Misaki, ChemPlusChem. 77 (2012) 973.
    [37]
    Y. Misaki, S. Noda, M. Kato, T. Yamauchi, T. Oshima, A. Yoshimura, T. Shirahata, M. Yao, ChemSusChem. 13 (2020) 2312-2320.
    [38]
    K.O. Park, Y. Cho, S. Lee, C.H. Yoo, K.H. Song, J. Cho, Energy Environ. Sci. 4 (2011) 1621-1633.
    [39]
    R.L. Melby, D.H. Hartzler, A.W. Sheppard, J. Org. Chem. 16 (1974) 2456-2458.
    [40]
    D. Chen, A.M. Hickner, E. Agar, E. Caglan, ACS Appl. Mater. Interfaces 5 (2013) 7559-7566.
    [41]
    T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy Mater. 6 (2016) 1501449.
    [42]
    X. Wei, W. Duan, J. Huang, Z. Lu, W. Wei, ACS Energy Lett. 1 (2016) 705-711.
    [43]
    H. Kim, T. Yoon, J. Jang, J. Mun, H. Park, H.J. Ryu, M.S. Oh, J. Power Sources. 283 (2015) 300-304.
    [44]
    A.M. Petersen, S.A. Andersson, K. Kilsa, B.M. Nielsen, Eur. J. Org. Chem. (2009) 1855-1858.
    [45]
    C. Zhang, Z. Niu, Y. Ding, L. Zhang, Y. Zhou, X. Guo, X. Zhang, Y. Zhao, G. Yu, Chem. 4 (2018) 2814-2825.
    [46]
    X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 26 (2014) 7649-7653.
    [47]
    J. Zhang, Z. Yang, A.I. Shkrob, S.R. Assary, S. Tung, B. Silcos, W. Duan, J. Zhang, C.C. Su, B. Hu, B. Pan, C. Liao, Z. Zhang, W. Wang, A.L. Curtiss, T.L. Thompson, X. Wei, L. Zhang, Adv. Energy Mater. 7 (2017) 1701272.
    [48]
    X. Wei, L. Cosimbescu, W. Xu, Z.J. Hu, M. Vijayakumar, J. Feng, Y.M. Hu, X. Deng, J. Xiao, J. Liu, Adv. Energy Mater. 5 (2015) 1400678.
    [49]
    S.D. Shin, M. Park, J. Ryu, I. Hwang, K.J. Seo, K. Seo, J. Cho, Y.S. Hong, J. Mater. Chem. A 6 (2018) 14761-14768.
    [50]
    W. Wang, W. Xu, L. Cosimbescu, D. Choi, Z. Yang, Chem. Commun. 48 (2012) 6669-6671.
    [51]
    L. Li, J.Y. Hong, Y.D. Chen, J.M. Lin, Chem. Commun. 55 (2019) 2364-2367.
    [52]
    H. Kim, J.K. Lee, K.Y. Han, H.J. Ryu, M.S. Oh, J. Power Sources. 348 (2017) 264-269.
    [53]
    M. Pahlevaninezhad, P. Leung, Q.P. Velasco, M. Pahlevani, C.F. Walsh, L.P.E. Roberts, P.C. Leonc, J. Power Sources. 500 (2021) 229942.
    [54]
    S.R. Assary, R.F. Brushett, A.L. Curtiss, Rsc Adv. 4 (2014) 57442-57451.
    [55]
    Y. Ding, Y. Li, G. Yu, Chem. 1 (2016) 790-801.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return