Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Zhifeng Huang, Rolf Hempelmann, Yiqiong Zhang, Li Tao, Ruiyong Chen. Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries. Green Energy&Environment, 2024, 9(4): 713-722. doi: 10.1016/j.gee.2022.09.005
Citation: Zhifeng Huang, Rolf Hempelmann, Yiqiong Zhang, Li Tao, Ruiyong Chen. Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries. Green Energy&Environment, 2024, 9(4): 713-722. doi: 10.1016/j.gee.2022.09.005

Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries

doi: 10.1016/j.gee.2022.09.005
  • Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redox flow batteries (RFBs) due to the advantages of high ionic conductivity, environmentally benign, safety and low cost. However, the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water (1.23 V) hinder their wide applications. Therefore, seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs. In this work, the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of -0.88 V and 0.78 V vs. Ag, respectively, in “water-in-ionic liquid” supporting electrolytes. Raman spectra reveal that the activity of water is largely suppressed in “water-in-ionic liquid” due to the enhanced hydrogen bond interactions between ionic liquid and water, enabling an electrochemical stability window above 3 V. “Water-in-ionic liquid” supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine. The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the “water-in-ionic liquid” electrolytes. Meanwhile, capacity retention of 99.91% per cycle is achieved over 500 charge/discharge cycles. A power density of 112 mW cm-2 is obtained at a current density of 30 mA cm-2. This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs.

     

  • loading
  • [1]
    W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 23 (2013) 970-986.
    [2]
    J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 54 (2015) 9776-9809.
    [3]
    G.L. Soloveichik, Chem. Rev. 115 (2015) 11533-11558.
    [4]
    R. Chen, Curr. Opin. Electrochem. 21 (2020) 40-45.
    [5]
    D. Larcher, J.-M. Tarascon, Nat. Chem. 7 (2015) 19-29.
    [6]
    R. Ye, D. Henkensmeier, S.J. Yoon, Z. Huang, D.K. Kim, Z. Chang, S. Kim, R. Chen, J. Electrochem. Energy Conver. Stor. 15 (2018) 010801.
    [7]
    A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem. 41 (2011) 1137-1164.
    [8]
    M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, ChemSusChem 9 (2016) 1521-1543.
    [9]
    S. Roe, C. Menictas, M. Skyllas-Kazacos, J. Electrochem. Soc. 163 (2016) A5023-A5028.
    [10]
    W. Lee, M. Jung, D. Serhiichuk, C. Noh, G. Gupta, C. Harms, Y. Kwon, D. Henkensmeier, J. Membr. Sci. 591 (2019) 117333.
    [11]
    H. Yoo, D. Lee, J.H. Kim, Green Energy Environ. 7 (2022) 704-711.
    [12]
    L. Dai, K. Huang, Y. Xia, Z. Xu, Green Energy Environ. 6 (2021) 193-211.
    [13]
    Z. Li, Y.-C. Lu, Chem 4 (2018) 2020-2021.
    [14]
    Y. Ding, C. Zhang, L. Zhang, Y. Zhou, G. Yu, Chem. Soc. Rev. 47 (2018) 69-103.
    [15]
    T.B. Schon, B.T. McAllister, P.-F. Li, D.S. Seferos, Chem. Soc. Rev. 45 (2016) 6345-6404.
    [16]
    Q. Chen, Y. Lv, Z. Yuan, X. Li, G. Yu, Z. Yang, T. Xu, Adv. Funct. Mater. 32 (2022) 2108777.
    [17]
    R. Feng, X. Zhang, V. Murugesan, A. Hollas, Y. Chen, Y. Shao, E. Walter, N.P. Wellala, L. Yan, K.M. Rosso, Science 372 (2021) 836-840.
    [18]
    T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, Nature 527 (2015) 78-81.
    [19]
    B. Hu, C. DeBruler, Z. Rhodes, T.L. Liu, J. Am. Chem. Soc. 139 (2017) 1207-1214.
    [20]
    Y. Zhao, Y. Ding, J. Song, G. Li, G. Dong, J.B. Goodenough, G. Yu, Angew. Chem. Int. Ed. 53 (2014) 11036-11040.
    [21]
    X. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W.A. Henderson, T. Liu, L. Cosimbescu, Angew. Chem. Int. Ed. 54 (2015) 8684-8687.
    [22]
    K. Gong, Q. Fang, S. Gu, S.F.Y. Li, Y. Yan, Energy Environ. Sci. 8 (2015) 3515-3530.
    [23]
    D.D.P. Eugene S. Beh, Rebecca L. Gracia, Kay T. Xia, Roy G. Gordon, Michael J. Aziz, ACS Energy Lett. 2 (2017) 639-644.
    [24]
    X. Luo, W. Peng, Y. Li, F. Zhang, X. Fan, Green Energy Environ. 7(5) (2022) 858-899.
    [25]
    K. Xu, Chem. Rev. 104 (2004) 4303-4418.
    [26]
    M.L. Perry, K.E. Rodby, F.R. Brushett, ACS Energy Lett. 7 (2022) 659-667.
    [27]
    E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S.A. Freunberger, F. Favier, O. Fontaine, Nat. Mater. 16 (2017) 446-453.
    [28]
    D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, J.H. Davis, M. Watanabe, P. Simon, C.A. Angell, Energy Environ. Sci. 7 (2014) 232-250.
    [29]
    Z. Chang, D. Henkensmeier, R. Chen, J. Power Sources 418 (2019) 11-16.
    [30]
    Z. Lei, B. Chen, Y.-M. Koo, D.R. MacFarlane, Chem. Rev. 117 (2017) 6633-6635.
    [31]
    A. Tatlisu, Z. Huang, R. Chen, ChemSusChem 11 (2018) 3899-3904.
    [32]
    M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta 51 (2006) 5567-5580.
    [33]
    M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 117 (2017) 7190-7239.
    [34]
    Z. Huang, P. Zhang, X. Gao, D. Henkensmeier, S. Passerini, R. Chen, ACS Appl. Energy Mater. 2 (2019) 3773-3779.
    [35]
    Z. Huang, C.W. Kay, B. Kuttich, D. Rauber, T. Kraus, H. Li, S. Kim, R. Chen, Nano Energy 69 (2020) 104464.
    [36]
    C.E. Bernardes, M.E. Minas da Piedade, J.N. Canongia Lopes, J. Phys. Chem. B 115 (2011) 2067-2074.
    [37]
    Z. Huang, J. Lee, D. Henkensmeier, R. Hempelmann, S. Kim, R. Chen, J. Electrochem. Soc. 167 (2020) 160502.
    [38]
    C. Wang, X. Li, B. Yu, Y. Wang, Z. Yang, H. Wang, H. Lin, J. Ma, G. Li, Z. Jin, ACS Energy Lett. 5 (2020) 411-417.
    [39]
    G. Kwon, S. Lee, J. Hwang, H.-S. Shim, B. Lee, M.H. Lee, Y. Ko, S.-K. Jung, K. Ku, J. Hong, Joule 2 (2018) 1771-1782.
    [40]
    A. Orita, M.G. Verde, M. Sakai, Y.S. Meng, Nat. Commun. 7 (2016) 13230.
    [41]
    A. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, Nat. Energy 3 (2018) 508.
    [42]
    X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 26 (2014) 7649-7653.
    [43]
    R.A. Gaussian09, Inc., Wallingford CT 121 (2009) 150-166.
    [44]
    M. Huang, S. Hu, X. Yuan, J. Huang, W. Li, Z. Xiang, Z. Fu, Z. Liang, Adv. Funct. Mater. 32 (2022) 2111744.
    [45]
    Y. Liu, Y. Li, P. Zuo, Q. Chen, G. Tang, P. Sun, Z. Yang, T. Xu, ChemSusChem 13 (2020) 2245-2249.
    [46]
    Q. Chen, Y. Li, Y. Liu, P. Sun, Z. Yang, T. Xu, ChemSusChem 14 (2021) 1295-1301.
    [47]
    C. Zhang, Z. Niu, S. Peng, Y. Ding, L. Zhang, X. Guo, Y. Zhao, G. Yu, Adv. Mater. 31 (2019) 1901052.
    [48]
    L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 350 (2015) 938-943.
    [49]
    P. Wasserscheid, T. Welton, John Wiley & Sons (2008).
    [50]
    R. Holomb, A. Martinelli, I. Albinsson, J.-C. Lassegues, P. Johansson, P. Jacobsson, J. Raman Spectr. 39 (2008) 793-805.
    [51]
    J.G. McDaniel, A. Verma, J. Phys. Chem. B 123 (2019) 5343-5356.
    [52]
    R. Yang, Y. Zhang, K. Takechi, E.J. Maginn, J. Phys. Chem. C 122 (2018) 13815-13826.
    [53]
    K. Dong, S. Zhang, J. Wang, Chem. Commun. 52 (2016) 6744-6764.
    [54]
    M. Becker, D. Rentsch, D. Reber, A. Aribia, C. Battaglia, R.S. Kuhnel, Angew. Chem. Int. Ed. 60 (2021) 14100-14108.
    [55]
    J. Meng, M. Ye, Y. Wang, Y. Sun, X. Zhang, K. Shi, X. Yan, Sci China Chem. 65 (2022) 96.
    [56]
    B. Fazio, A. Triolo, G. Di Marco, J. Raman Spectr. 39 (2008) 233-237.
    [57]
    N.R. Dhumal, M.P. Singh, J.A. Anderson, J. Kiefer, H.J. Kim, J. Phys. Chem. C 120 (2016) 3295-3304.
    [58]
    T. Yamamura, N. Watanabe, T. Yano, Y. Shiokawa, J. Electrochem. Soc. 152 (2005) A830-A836.
    [59]
    L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, Adv. Energy. Mater. 1 (2011) 394-400.
    [60]
    T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy. Mater. 6 (2016) 1501449.
    [61]
    P. Hu, H. Lan, X. Wang, Y. Yang, X. Liu, H. Wang, L. Guo, Energy Stor. Mater. 19 (2019) 62-68.
    [62]
    P. Sun, Y. Liu, P. Zuo, Y. Li, Q. Chen, Z. Yang, T. Xu, J. Energy Chem. 60 (2021) 368-375.
    [63]
    J. Luo, W. Wu, C. Debruler, B. Hu, M. Hu, T.L. Liu, J. Mater. Chem. A 7 (2019) 9130-9136.
    [64]
    S. Pang, X. Wang, P. Wang, Y. Ji, Angew. Chem. Int. Ed. 60 (2021) 5289-5298.
    [65]
    W. Liu, Z. Zhao, T. Li, S. Li, H. Zhang, X. Li, Sci. Bull. 66 (2021) 457-463.
    [66]
    J. Luo, B. Hu, C. Debruler, T.L. Liu, Angew. Chem. Int. Ed. 57 (2018) 231-235.
    [67]
    C. DeBruler, B. Hu, J. Moss, X. Liu, J. Luo, Y. Sun, T.L. Liu, Chem 3 (2017) 961-978.
    [68]
    R. Ye, D. Henkensmeier, R. Chen, Sustain. Energy Fuels 4 (2020) 2998-3005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return