Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Aitang Zhang, Kai Wang, Md Julker Nine, Mengyu Cao, Hanwen Zong, Zhiqiang Liu, Hanwen Guo, Jingquan Liu, Dusan Losic. Natural high-porous diatomaceous-earth based self-floating aerogel for efficient solar steam power generation. Green Energy&Environment, 2024, 9(2): 378-389. doi: 10.1016/j.gee.2022.08.001
Citation: Aitang Zhang, Kai Wang, Md Julker Nine, Mengyu Cao, Hanwen Zong, Zhiqiang Liu, Hanwen Guo, Jingquan Liu, Dusan Losic. Natural high-porous diatomaceous-earth based self-floating aerogel for efficient solar steam power generation. Green Energy&Environment, 2024, 9(2): 378-389. doi: 10.1016/j.gee.2022.08.001

Natural high-porous diatomaceous-earth based self-floating aerogel for efficient solar steam power generation

doi: 10.1016/j.gee.2022.08.001
  • The application of solar steam generation in seawater desalination is an effective way to solve the shortage of fresh water resources. At present, many kinds of photothermal conversion materials have been developed and used as evaporators in seawater desalination. However, some evaporators need additional thermal insulation or water supply devices to achieve efficient photothermal conversion. In addition, their complex, time consuming and no scalable preparation process, high cost of raw materials and poor salt resistance hinder the practical application of these evaporator. Owing to its distinctive nanoporous structure, diatomite as fossilized single-cells algae diatoms is a promising natural silica-based material for seawater desalination. They are taken from sea and that makes true sense to use them in the sea. Herein, we report the first example of synthesis robust three-dimensional (3D) natural-diatomite composite by assembling polyaniline nanoparticles covered diatomite into the polyvinyl alcohol pre-treated melamine foam frameworks and demonstrate its application as new evaporator for seawater desalination. The porous framework does not only improve the sunlight scattering efficiency, but also offer large network of channels for water transportation. The inherent mechanism behind salt desalination process involves the absorption of water molecules on the surface of the internal silica micro-nano pores, and evaporation under the heat induced by the polyaniline absorbed sunlight. Meanwhile, the metal ions are segregated by many available pores and channels to achieve the self-desalting effect. The developed evaporator possesses the superiority of multi-stage pore structure, strong hydrophilicity, low thermal conductivity, excellent light absorption, fast water transportation and salt-resistant crystallization as well as good durability. The evaporation rate without an additional device is found to be 1.689 kg m-2 h-1 under 1-Sun irradiation, and the energy conversion efficiency is as high as 95%. This work creates a platform and develops the prospect of employing green and sustainable natural-diatomite composite evaporator for practical applications of seawater desalination.

     

  • loading
  • [1]
    H. Wan, W. Ma, K. Zhou, Y. Cao, X. Liu, R. Ma, Green Energy Environ. 7 (2022) 205-220.
    [2]
    S. Chu, Y. Cui, N. Liu, Nat. Mater. 16 (2017) 16-22.
    [3]
    M. Gao, L. Zhu, C. K. Peh, G. W. Ho, Energy Environ. Sci. 12 (2019) 841-864.
    [4]
    L. Zhu, T. Ding, M. Gao, C. K. N. Peh, G. W. Ho, Adv. Energy Mater. 9 (2019) 1900250.
    [5]
    X. Chen, C. Meng, Y. Wang, Q. Zhao, Y. Li, X. M. Chen, D. Yang, Y. Li, Y. Zhou, ACS Sustain. Chem. Eng. 8 (2020) 1095-1101.
    [6]
    X. Wu, M. E. Robson, J. L. Phelps, J. S. Tan, B. Shao, G. Owens, H. Xu, Nano Energy 56 (2019) 708-715.
    [7]
    X. Wu, T. Gao, C. Han, J. Xu, G. Owens, H. Xu, Sci. Bull. 64 (2019) 1625-1633.
    [8]
    Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu, X. Liu, Adv. Funct. Mater. 29 (2019) 1905485.
    [9]
    H. Li, Y. He, Y. Hu, X. Wang, ACS Appl. Mater. Interf. 10 (2018) 9362-9368.
    [10]
    X. Liu, H. Cheng, Z. Guo, Q. Zhan, J. Qian, X. Wang, ACS Appl. Mater. Interf. 10 (2018) 39661-39669.
    [11]
    W. Zhang, W. Zhu, S. Shi, N. Hu, Y. Suo, J. Wang, J. Mater. Chem. A 6 (2018) 16220-16227.
    [12]
    B. Huo, D. Jiang, X. Cao, H. Liang, Z. Liu, C. Li, J. Liu, Carbon 142 (2019) 13-19.
    [13]
    X. Han, W. Wang, K. Zuo, L. Chen, L. Yuan, J. Liang, Q. Li, P. M. Ajayan, Y. Zhao, J. Lou, Nano Energy 60 (2019) 567-575.
    [14]
    L. Sun, J. Liu, Y. Zhao, J. Xu, Y. Li, Carbon 145 (2019) 352-358.
    [15]
    B. Zhang, C. Song, C. Liu, J. Min, J. Azadmanjiri, Y. Ni, R. Niu, J. Gong, Q. Zhao, T. Tang, J. Mater. Chem. A 7 (2019) 22912-22923.
    [16]
    C. Li, D. Jiang, B. Huo, M. Ding, C. Huang, D. Jia, H. Li, C. Y. Liu, J. Liu, Nano Energy 60 (2019) 841-849.
    [17]
    K. Wang, B. Huo, F. Liu, Y. Zheng, M. Zhang, L. Cui, J. Liu, Desalination 481 (2020) 114303.
    [18]
    M. Tan, J. Wang, W. Song, J. Fang, X. Zhang, J. Mater. Chem. A 7 (2019) 1244-1251.
    [19]
    K. Wang, Z. Cheng, P. Li, Y. Zheng, Z. Liu, L. Cui, J. Xu, J. Liu, J. Colloid. Interf. Sci. 581 (2021) 504-513.
    [20]
    L. Shi, Y. Shi, S. Zhuo, C. Zhang, Y. Aldrees, S. Aleid, P. Wang, Nano Energy 60 (2019) 222-230.
    [21]
    F. He, M. Han, J. Zhang, Z. Wang, X. Wu, Y. Zhou, L. Jiang, S. Peng, Y. Li, Nano Energy 71 (2020) 104650.
    [22]
    X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li, J. Liang, Y. Chen, Adv. Funct. Mater. 30 (2020) 2007110.
    [23]
    J. U. Kim, S. J. Kang, S. Lee, J. Ok, Y. Kim, S. H. Roh, H. Hong, J. K. Kim, H. Chae, S. J. Kwon, T. I. Kim, Adv. Funct. Mater. 30 (2020) 2003862.
    [24]
    S. Chen, Z. Sun, W. Xiang, C. Shen, Z. Wang, X. Jia, J. Sun, C. Liu, Nano Energy 76 (2020) 104998.
    [25]
    X. Sun, Y. Zhang, D. Losic, J. Mater. Chem. A 5 (2017) 8847-8859.
    [26]
    P. Patil, Madhuprasad, M. P. Bhat, M. G. Gatti, S. Kabiri, T. Altalhi, H. Y. Jung, D. Losicx, M. Kurkuri, Chem. Eng. J. 327 (2017) 725-733.
    [27]
    M. Sumper, Science 295 (2002) 2430.
    [28]
    D. Losic, J. G. Mitchell, N. H. Voelcker, Adv. Mater. 21 (2009) 2947-2958.
    [29]
    M. S. Aw, S. Simovic, J. Addai-Mensah, D. Losic, Nanomedicine 6 (2011) 1159-1173.
    [30]
    C. Song, B. Zhang, L. Hao, J. Min, N. Liu, R. Niu, J. Gong, T. Tang, Green Energy Environ. 7 (2022) 411-422.
    [31]
    Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. Abernathy Iii, C. J. Summers, M. Liu, K. H. Sandhage, Nature 446 (2007) 172-175.
    [32]
    S. Chandrasekaran, M. J. Sweetman, K. Kant, W. Skinner, D. Losic, T. Nann, N. H. Voelcker, Chem. Commun. 50 (2014) 10441-10444.
    [33]
    J. Han, Z. Dong, L. Hao, J. Gong, Q. Zhao, Green Energy Environ. https://doi.org/10.1016/j.gee.2021.03.010.
    [34]
    M. Yang, B. Cheng, H. Song, X. Chen, Electrochim. Acta. 55 (2010) 7021-7027.
    [35]
    M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, W. A. Wakeham, J. Phys. Chem. Ref. Data 24 (1995) 1377-1381.
    [36]
    Z. Wang, T. Horseman, A. P. Straub, N. Y. Yip, D. Li, M. Elimelech, S. Lin, Sci. Adv. 5 (2019) 0763.
    [37]
    S. K. Patel, C. L. Ritt, A. Deshmukh, Z. Wang, M. Qin, R. Epsztein, M. Elimelech, Energy Environ. Sci.13 (2020) 1694-1710.
    [38]
    H. Song, Y. Liu, Z. Liu, M. H. Singer, C. Li, A. R. Cheney, D. Ji, L. Zhou, N. Zhang, X. Zeng, Z. Bei, Z. Yu, S. Jiang, Q. Gan, Adv. Sci. 5 (2018) 1800222.
    [39]
    Q. Chen, Z. Pei, Y. Xu, Z. Li, Y. Yang, Y. Wei, Y. Ji, Chem .Sci. 9 (2018) 623-628.
    [40]
    Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi, G. Yu, Adv. Mater. 32 (2020) 1907061.
    [41]
    T. Chen, H. Xie, X. Qiao, S. Hao, Z. Wu, D. Sun, Z. Liu, F. Cao, B. Wu, X. Fang, ACS Appl. Mater. Interf. 12 (2020) 50397-50405.
    [42]
    H. Wang, A. Du, X. Ji, C. Zhang, B. Zhou, Z. Zhang, J. Shen, ACS Appl. Mater. Interf. 11 (2019) 42057-42065.
    [43]
    Z. Chen, B. Dang, X. Luo, W. Li, J. Li, H. Yu, S. Liu, S. Li, ACS Appl. Mater. Interf. 11 (2019) 26032-26037.
    [44]
    J. Yang, Y. Chen, X. Jia, Y. Li, S. Wang, H. Song, ACS Appl. Mater. Interf. 12 (2020) 47029-47037.
    [45]
    X. Zhao, X. Zha, L. Tang, J. Pu, K. Ke, R. Bao, Z. Liu, M. Yang, W. Yang, Nano Res. 13 (2020) 255-264.
    [46]
    X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu, B. Hou, Y. Wang, K. P. Homewood, X. Wang, Carbon 167 (2020) 285-295.
    [47]
    Z. Li, W. Ma, J. Xu, M. Qian, H. Bi, W. Zhao, Z. Lv, F. Huang, Carbon 170 (2020) 256-263.
    [48]
    Y. Yu, S. Chen, Y. Jia, T. Qi, L. Xiao, X. Cui, D. Zhuang, J. Wei, Carbon 169 (2020) 134-141.
    [49]
    C. Wang, J. Wang, Z. Li, K. Xu, T. Lei, W. Wang, J. Mater. Chem. A 8 (2020) 9528-9535.
    [50]
    A. H. Smith, P. A. Lopipero, M. N. Bates, C. M. Steinmaus, Science 296 (2002) 2145.
    [51]
    L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics. 10 (2016) 393-398.
    [52]
    H. Hekmatnia, F. Barzegari Banadkooki, V. Moosavi, A. Zare Chahouki, Mdrsjrns 9 (2021) 11-21.
    [53]
    Y. Long, S. Huang, H. Yi, J. Chen, J. Wu, Q. Liao, H. Liang, H. Cui, S. Ruan, Y. Zeng, J. Mater. Chem. A 7 (2019) 26911-26916.
    [54]
    S. Zhou, S. Huang, Y. Ming, Y. Long, H. Liang, S. Ruan, Y. Zeng, H. Cui. J. Mater. Chem. A 9 (2021) 9909-9917.
    [55]
    J. Xiao, Y. Guo, W. Luo, D. Wang, S. Zhong, Y. Yue, C. Han, R. Lv, J. Feng, J. Wang, W. Huang, X. Tian, W. Xiao, Y. Shen, Nano Energy 87 (2021) 106213.
    [56]
    S. Meng, X. Zhao, C. Yang, P. Yu, R. Bao, Z. Liu, M. Yang, W. Yang, J. Mater. Chem. A 8 (2020) 2701-2711.
    [57]
    Y. Jin, K. Wang, S. Li, J. Liu, J. Colloid. Interf. Sci. 614 (2022) 345-354.
    [58]
    H. Li, D. Jia, M. Ding, L. Zhou, K. Wang, J. Liu, C. Liu, C. Li, Solar RRL 5 (2021) 2100317.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return