Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Qiang Zhou, Feng Gong, Yunlong Xie, Rui Xiao. 1+1>2: Learning from the interfacial modulation on single-atom electrocatalysts to design dual-atom electrocatalysts for dinitrogen reduction. Green Energy&Environment, 2023, 8(6): 1753-1763. doi: 10.1016/j.gee.2022.06.005
Citation: Qiang Zhou, Feng Gong, Yunlong Xie, Rui Xiao. 1+1>2: Learning from the interfacial modulation on single-atom electrocatalysts to design dual-atom electrocatalysts for dinitrogen reduction. Green Energy&Environment, 2023, 8(6): 1753-1763. doi: 10.1016/j.gee.2022.06.005

1+1>2: Learning from the interfacial modulation on single-atom electrocatalysts to design dual-atom electrocatalysts for dinitrogen reduction

doi: 10.1016/j.gee.2022.06.005
  • Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory calculations, we demonstrated that the interfacial modulation of hexagonal boron nitride/graphene (hBN-graphene) could sufficiently improve the catalytic activity of the single transition metal atom catalysts for nitrogen reduction reaction (NRR). It was revealed that Re@hBN-graphene and Os@hBN-graphene possessed remarkable NRR catalytic activity with low limiting potentials of 0.29 V and 0.33 V, respectively. Furthermore, the mechanism of the enhanced catalytic activity was investigated based on various descriptors of the adsorption energies of intermediates, where the synergistic effect of hBN and graphene in the hybrid substrate was found to play a key role. Motivated by the synergistic effect of hybrid substrate in single-atom catalysts, a novel strategy was proposed to efficiently design dual-atom catalysts by integrating the merits of both metal components. The as-designed dual-atom catalyst Fe-Mo@hBN exhibited more excellent NRR catalytic performance with a limiting potential of 0.17 V, manifesting the solidity of the design strategy. Our findings open new avenues for the search of heterostructure substrates for single-atom catalysts and the efficient design of dual-atom catalysts for NRR.

     

  • loading
  • [1]
    J.N. Galloway; A.R. Townsend; J.W. Erisman; M. Bekunda; Z. Cai; J.R. Freney; L.A. Martinelli; S.P. Seitzinger; M.A. Sutton, Science 320 (2008) 889.
    [2]
    J. Rittle; J.C. Peters, J. Am. Chem. Soc. 138 (2016) 4243-4248.
    [3]
    D.E. Canfield; A.N. Glazer; P.G. Falkowski, Science 330 (2010) 192.
    [4]
    Y. Zhang; Q. Zhou; P. Wang; Y. Zhao; F. Gong; W.Y. Sun, ChemSusChem (2022) e202102528.
    [5]
    F. Gong; H. Li; Q. Zhou; M. Wang; W. Wang; Y. Lv; R. Xiao; D.V. Papavassiliou, Nano Energy 74 (2020) 104922.
    [6]
    B. Xu; L. Xia; F. Zhou; R. Zhao; H. Chen; T. Wang; Q. Zhou; Q. Liu; G. Cui; X. Xiong; F. Gong; X. Sun, ACS Sustain. Chem. Eng. 7 (2019) 2889-2893.
    [7]
    I.A. Amar; R. Lan; C.T.G. Petit; S. Tao, J. Solid State Electrochem. 15 (2011) 1845-1860.
    [8]
    K. Honkala; A. Hellman; I.N. Remediakis; A. Logadottir; A. Carlsson; S. Dahl; C.H. Christensen; J.K. Noerskov, Science 307 (2005) 555.
    [9]
    F. Gong; H. Li; W. Wang; J. Huang; D. Xia; J. Liao; M. Wu; D.V. Papavassiliou, Nano Energy 58 (2019) 322-330.
    [10]
    Z. Wang; F. Gong; L. Zhang; R. Wang; L. Ji; Q. Liu; Y. Luo; H. Guo; Y. Li; P. Gao; X. Shi; B. Li; B. Tang; X. Sun, Adv. Sci. 6 (2019) 1801182.
    [11]
    D.E. Resasco; B. Wang; D. Sabatini, Nat. Catal. 1 (2018) 731-735.
    [12]
    T. Wu; P. Li; H. Wang; R. Zhao; Q. Zhou; W. Kong; M. Liu; Y. Zhang; X. Sun; F. Gong, Chem. Commun. 55 (2019) 2684-2687.
    [13]
    C.J.M. Van Der Ham; M.T.M. Koper; D.G.H. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183-5191.
    [14]
    Y. Nishibayashi, Inorg. Chem. 54 (2015) 9234-9247.
    [15]
    C. Ling; X. Niu; Q. Li; A. Du; J. Wang, J. Am. Chem. Soc. 140 (2018) 14161-14168.
    [16]
    Y. Abghoui; A.L. Garden; J.G. Howalt; T. Vegge; E. Skulason, ACS Catal. 6 (2016) 635-646.
    [17]
    J.G. Howalt; T. Bligaard; J. Rossmeisl; T. Vegge, Phys. Chem. Chem. Phys. 15 (2013) 7785-7795.
    [18]
    E. Skulason; T. Bligaard; S. Gudmundsdottir; F. Studt; J. Rossmeisl; F. Abild-Pedersen; T. Vegge; H. Jonsson; J.K. Noerskov, Phys. Chem. Chem. Phys. 14 (2012) 1235-1245.
    [19]
    X. Yan; K. Liu; T. Wang; Y. You; J. Liu; P. Wang; X. Pan; G. Wang; J. Luo; J. Zhu, J. Mater. Chem. A 5 (2017) 3336-3345.
    [20]
    H. Tanaka; Y. Nishibayashi; K. Yoshizawa, Acc. Chem. Res. 49 (2016) 987-995.
    [21]
    S. Oh; J.R. Gallagher; J.T. Miller; Y. Surendranath, J. Am. Chem. Soc. 138 (2016) 1820-1823.
    [22]
    C. Liao; B. Liu; Q. Chi; Z. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 44421-44429.
    [23]
    Q. Zhou; F. Gong; Y. Xie; D. Xia; Z. Hu; S. Wang; L. Liu; R. Xiao, Fuel 310 (2022) 122442.
    [24]
    X.-F. Li; Q.-K. Li; J. Cheng; L. Liu; Q. Yan; Y. Wu; X.-H. Zhang; Z.-Y. Wang; Q. Qiu; Y. Luo, J. Am. Chem. Soc. 138 (2016) 8706-8709.
    [25]
    J. Zhao; Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480-12487.
    [26]
    R. Drost; S. Kezilebieke; M. M. Ervasti; S.K. Hamalainen; F. Schulz; A. Harju; P. Liljeroth, Sci. Rep. 5 (2015) 16741.
    [27]
    Z. Liu; L. Ma; G. Shi; W. Zhou; Y. Gong; S. Lei; X. Yang; J. Zhang; J. Yu; K.P. Hackenberg; A. Babakhani; J.-C. Idrobo; R. Vajtai; J. Lou; P.M. Ajayan, Nat. Nanotechnol. 8 (2013) 119.
    [28]
    P. Sutter; R. Cortes; J. Lahiri; E. Sutter, Nano Lett. 12 (2012) 4869-4874.
    [29]
    Y. Huang; T. Yang; L. Yang; R. Liu; G. Zhang; J. Jiang; Y. Luo; P. Lian; S. Tang, J. Mater. Chem. A 7 (2019) 15173-15180.
    [30]
    H. Niu; X. Wang; C. Shao; Z. Zhang; Y. Guo, ACS Sustain. Chem. Eng. 8 (2020) 13749-13758.
    [31]
    G. Zheng; Y. Li; X. Qian; G. Yao; Z. Tian; X. Zhang; L. Chen, ACS Appl. Mater. Interfaces 13 (2021) 16336-16344.
    [32]
    Z. Xue; X. Zhang; J. Qin; R. Liu, Nano Energy 80 (2021) 105527.
    [33]
    S. Wang; L. Li; K. San Hui; F. Bin; W. Zhou; X. Fan; E. Zalnezhad; J. Li; K.N. Hui, Adv. Eng. Mater. 23 (2021) 2100405.
    [34]
    W. Song; K. Xie; Y. Guo; L. Fu; C. He, ChemPhysChem 22 (2021) 1712-1721.
    [35]
    W. Nong; S. Qin; F. Huang; H. Liang; Z. Yang; C. Qi; Y. Li; C. Wang, Carbon 182 (2021) 297-306.
    [36]
    D. Ma; Z. Zeng; L. Liu; Y. Jia, J. Energy Chem. 54 (2021) 501-509.
    [37]
    X. Lv; W. Wei; B. Huang; Y. Dai; T. Frauenheim, Nano Lett. 21 (2021) 1871-1878.
    [38]
    J.-C. Liu; X.-L. Ma; Y. Li; Y.-G. Wang; H. Xiao; J. Li, Nat. Commun. 9 (2018) 1610.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return