Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Peng Zhang, Fukuan Li, Mingming He, Silu Huo, Xueli Zhang, Benqiang Cen, Dezhi Fang, Kexun Li, Hao Wang. In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites. Green Energy&Environment, 2024, 9(1): 126-137. doi: 10.1016/j.gee.2022.06.004
Citation: Peng Zhang, Fukuan Li, Mingming He, Silu Huo, Xueli Zhang, Benqiang Cen, Dezhi Fang, Kexun Li, Hao Wang. In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites. Green Energy&Environment, 2024, 9(1): 126-137. doi: 10.1016/j.gee.2022.06.004

In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites

doi: 10.1016/j.gee.2022.06.004
  • Phosphate removal is crucial for eutrophication control and water quality improvement. Electro-assisted adsorption, an eco-friendly electrosorption process, exhibited a promising potential for wastewater treatment. However, there are few works focused on phosphate electrosorption, and reported electrodes cannot attach satisfactory removal capacities and rates. Herein, electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon (LaPC) has been originally demonstrated. The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites, but also provided good conductivity for interfacial electron transfer. The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g-1 at 1 V, outperforming most existing electrodes. The superior phosphate removal performance originates from abundant active centers formed by the coupling of electric field and capture sites. Besides, the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions. Moreover, a series of kinetics and isotherms models were employed to validate the electrosorption process. This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.

     

  • loading
  • [1]
    B. Wu, I.M.C. Lo, Environ. Sci. Technol. 54 (2020) 4601-4608.
    [2]
    Y. Lei, Z. Zhan, M. Saakes, R.D. van der Weijden, C.J.N. Buisman, Water Res. 199 (2021) 117199.
    [3]
    J. Yu, C. Xiang, G. Zhang, H. Wang, Q. Ji, J. Qu, Environ. Sci. Technol. 53 (2019) 9073-9080.
    [4]
    P.S. Kumar, L. Korving, M.C.M. van Loosdrecht, G. Witkamp, Water Research X 4 (2019) 100029.
    [5]
    P. Zhang, M. He, S. Huo, F. Li, K. Li, Chem. Eng. J. 446 (2022) 137081.
    [6]
    J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham, Front. Env. Sci. 6 (2018) 8.
    [7]
    M. Li, Y. Liu, F. Li, C. Shen, Y.V. Kaneti, Y. Yamauchi, B. Yuliarto, B. Chen, C. Wang, Environ. Sci. Technol. 55 (2021) 13209-13218.
    [8]
    R. Liu, L. Chi, J. Feng, X. Wang, Water Res. 184 (2020) 116198.
    [9]
    Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu, L. Xiang, C. Li, Y. Yamauchi, Y. Mai, Angew. Chem. Int. Edit. 133 (2021) 26732-26738.
    [10]
    B. Cen, R. Yang, K. Li, C. Lv, B. Liang, Chem. Eng. J. 425 (2021) 130573.
    [11]
    M. He, P. Zhang, X. Zhang, F. Li, S. Huo, D. Fang, B. Liang, K. Li, J. Clean. Prod. 361 (2022) 132262.
    [12]
    T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart, Z. Wang, Z. He, G. Liu, Sci. Adv. 6 (2020) z906.
    [13]
    J.G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M.E. Suss, P. Liang, P.M. Biesheuvel, R.L. Zornitta, L. de Smet, M. Aghazadeh, Energ. Environ. Sci. 14 (2021) 1095-1120.
    [14]
    S.P. Hong, H. Yoon, J. Lee, C. Kim, S. Kim, J. Lee, C. Lee, J. Yoon, J. Colloid Interf. Sci. 564 (2020) 1-7.
    [15]
    X. Hong, E. Zhu, Z. Ye, K.S. Hui, K.N. Hui, J. Electroanal. Chem. 836 (2019) 16-23.
    [16]
    E. Zhu, X. Hong, Z. Ye, K.S. Hui, K.N. Hui, Sep. Purif. Technol. 215 (2019) 454-462.
    [17]
    Y. Lai, W. Liu, L. Chen, M. Chang, C. Lee, N. Tai, J. Mater. Chem. A 7 (2019) 3962-3970.
    [18]
    H. Hao, Y. Wang, B. Shi, Water Res. 155 (2019) 1-11.
    [19]
    Y. Yang, Y. Wang, C. Zheng, H. Lin, R. Xu, H. Zhu, L. Bao, X. Xu, Chem. Eng. J. 430 (2021) 133166.
    [20]
    W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1 (2016) 16023.
    [21]
    Q. Wang, D. Astruc, Chem. Rev. 120 (2020) 1438-1511.
    [22]
    J. He, W. Wang, F. Sun, W. Shi, D. Qi, K. Wang, R. Shi, F. Cui, C. Wang, X. Chen, ACS Nano 9 (2015) 9292-9302.
    [23]
    H.O. Jethva, P.M. Vyas, K.P. Tank, M.J. Joshi, J. Therm. Anal. Calorim. 117 (2014) 589-594.
    [24]
    V.D. Doan, T.L. Do, T.M.T. Ho, V.T. Le, H.T. Nguyen, Sep. Sci. Technol. 55 (2020) 444-455.
    [25]
    Q.Q. Liu, S.H. Zhang, J. Yang, K.F. Yue, Analyst 144 (2019) 4534-4544.
    [26]
    Q. Mu, Y. Wang, J. Alloy. Compd. 509 (2011) 396-401.
    [27]
    L. Zhang, Y. Liu, Y. Wang, X. Li, Y. Wang, Appl. Surf. Sci. 557 (2021) 149838.
    [28]
    Y. Wimalasiri, L. Zou, Carbon 59 (2013) 464-471.
    [29]
    H. Qiu, C. Liang, J. Yu, Q. Zhang, M. Song, F. Chen, Chem. Eng. J. 315 (2017) 345-354.
    [30]
    P. Koilraj, K. Sasaki, Chem. Eng. J. 317 (2017) 1059-1068.
    [31]
    D. Wu, Y. Zhan, J. Lin, Z. Zhang, B. Xie, Chem. Eng. J. 427 (2022) 132021.
    [32]
    E. Frackowiak, F. Beguin, Carbon 39 (2001) 937-950.
    [33]
    G. Wang, T. Yan, J. Shen, J. Zhang, D. Zhang, Environ. Sci. Technol. 55 (2021) 11979-11986.
    [34]
    S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni, Y. Yan, J. Power Sources 387 (2018) 81-90.
    [35]
    J. Choi, P. Dorji, H.K. Shon, S. Hong, Desalination 449 (2019) 118-130.
    [36]
    J.G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M.E. Suss, P. Liang, P.M. Biesheuvel, R.L. Zornitta, L. de Smet, Energ. Environ. Sci. 14 (2021) 1095-1120.
    [37]
    Z. Ge, X. Chen, X. Huang, Z.J. Ren, Environ. Sci. Wat. Res. 4 (2018) 33-39.
    [38]
    A.O. Abo El Naga, S.A. Shaban, F.Y.A. El Kady, J. Taiwan Inst. Chem. E. 93 (2018) 363-373.
    [39]
    T. Liao, T. Li, X. Su, X. Yu, H. Song, Y. Zhu, Y. Zhang, Bioresource Technol. 263 (2018) 207-213.
    [40]
    B. Wu, L. Fang, J.D. Fortner, X. Guan, I.M.C. Lo, Water Res. 126 (2017) 179-188.
    [41]
    Y. Zhao, H. Guo, H. Han, J. Zhang, X. Hu, Adsorpt. Sci. Technol. 2021 (2021) 1-10.
    [42]
    Y. Yang, K.Y. Koh, H. Huang, H. Zhang, Y. Yan, J.P. Chen, Chemosphere 264 (2021) 128378.
    [43]
    X. Wang, L. Dou, Z. Li, L. Yang, J. Yu, B. Ding, ACS Appl. Mater. Inter. 8 (2016) 34668-34676.
    [44]
    C. Lu, K. Klementiev, T. Hassenkam, W. Qian, J. Ai, H. Chr. Bruun Hansen, Chem. Eng. J. 422 (2021) 130009.
    [45]
    R. Liu, L. Chi, X. Wang, Y. Wang, Y. Sui, T. Xie, H. Arandiyan, Chem. Eng. J. 357 (2019) 159-168.
    [46]
    X. Zhang, F. Sun, J. He, H. Xu, F. Cui, W. Wang, Chem. Eng. J. 326 (2017) 1086-1094.
    [47]
    B. Lin, M. Hua, Y. Zhang, W. Zhang, L. Lv, B. Pan, Chemosphere 166 (2017) 422-430.
    [48]
    M. Zamparas, A. Gianni, P. Stathi, Y. Deligiannakis, I. Zacharias, Appl. Clay Sci. 62-63 (2012) 101-106.
    [49]
    Y. Huang, X. Lee, M. Grattieri, M. Yuan, R. Cai, F.C. Macazo, S.D. Minteer, Chem. Eng. J. 380 (2020) 122375.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (296) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return