Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Jiakai Li, Changpeng Lv, Jiajia Song, Xiaoling Zhang, Xizhen Huang, Yingzhuo Ma, Haijie Cao, Na Liu. Superwetting Ag/α-Fe2O3 anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification. Green Energy&Environment, 2024, 9(1): 89-103. doi: 10.1016/j.gee.2022.05.005
Citation: Jiakai Li, Changpeng Lv, Jiajia Song, Xiaoling Zhang, Xizhen Huang, Yingzhuo Ma, Haijie Cao, Na Liu. Superwetting Ag/α-Fe2O3 anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification. Green Energy&Environment, 2024, 9(1): 89-103. doi: 10.1016/j.gee.2022.05.005

Superwetting Ag/α-Fe2O3 anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification

doi: 10.1016/j.gee.2022.05.005
  • Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation. However, it is still a challenge to fabricate multifunctional and environmentally friendly materials, which can be stably applied to purify the actual complicated wastewater. Here, a Ag/α-Fe2O3 heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method. The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeation flux driven by gravity. Benefiting from the joint effects of the smaller band gap of Ag/α-Fe2O3 heterojunction, inherent antibacterial capacity of α-Fe2O3 and Ag nanoparticles, favorable conductive substrate, as well as the hierarchical structure with superwettability, such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the pure α-Fe2O3 coated mesh. Impressively, the mesh exhibited bifunctional water purification performance, in which organic dyes were eliminated simultaneously from water during oil/water separation in one filtration process. More importantly, this mesh behaved exceptional chemical resistance, mechanical stability and long-term reusability. Therefore, this material with multifunctional integration may hold promising potential for steady water purification in practice.

     

  • loading
  • [1]
    B.L. Peng, Z.L. Yao, X.C. Wang, M. Crombeen, D.G. Sweeney, K.C. Tam, Green Energy Environ. 5 (2020) 37-49.
    [2]
    B. Wang, W. Liang, Z. Guo, W. Liu, Chem. Soc. Rev. 44 (2015) 336-361.
    [3]
    X. Zeng, W. Cai, S. Fu, X. Lin, Q. Lu, S. Liao, H. Hu, M. Zhang, C. Zhou, X. Wen, S. Tan, J. Hazard. Mater. 424 (2022) 127543.
    [4]
    S. Jiao, Y.M. Zhao, C.S. Li, B.S. Wang, Y. Qu, Green Energy Environ. 4 (2019) 66-74.
    [5]
    Y. Liu, W. Li, C. Yuan, L. Jia, Y. Liu, A. Huang, Y. Cui, Angew. Chem. Int. Ed. 61 (2022) e202113348.
    [6]
    X. Su, H. Li, X. Lai, L. Zhang, X. Liao, J. Wang, Z. Chen, J. He, X. Zeng, ACS Appl. Mater. Interfaces 10 (2018) 4213-4221.
    [7]
    M. Li, C. Bian, G. Yang, X. Qiang, Chem. Eng. J. 368 (2019) 350-358.
    [8]
    J. Li, R. Kang, X. Tang, H. She, Y. Yang, F. Zha, Nanoscale 8 (2016) 7638-7645.
    [9]
    Y. Liu, X. Wang, S. Feng, Adv. Funct. Mater. 29 (2019) 1902488.
    [10]
    N. Liu, X. Li, J. Li, Y. Cao, L. Feng, Sep. Purif. Technol. 241 (2020) 116733.
    [11]
    F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, L. Jiang, Adv. Mater. 25 (2013) 4192-4198.
    [12]
    K. Huang, P. Rowe, C. Chi, V. Sreepal, T. Bohn, K.-G. Zhou, Y. Su, E. Prestat, P.B. Pillai, C.T. Cherian, A. Michaelides, R.R. Nair, Nat. Commun. 11 (2020) 1097.
    [13]
    M.R. Ghadimi, M. Azad, S. Amirpoor, R.S. Moakhar, A. Dolati, Mater. Lett. 256 (2019) 126627.
    [14]
    X. Li, Q. Gui, Y. Wei, L. Feng, J. Mater. Chem. A 9 (2021) 26127-26134.
    [15]
    Q. Cheng, X. Zhao, Y. Weng, Y. Li, J. Zeng, ACS Sustain. Chem. Eng. 7 (2019) 15696-15705.
    [16]
    J. Li, C. Lv, X. Liu, Z. Jiao, N. Liu, Energy Environ. Mater. 4 (2021) 611-619.
    [17]
    M. Cui, P. Mu, Y. Shen, G. Zhu, L. Luo, J. Li, Sep. Purif. Technol. 235 (2020) 116210.
    [18]
    Z. Li, T.C. Zhang, T. Mokoba, S. Yuan, ACS Appl. Mater. Interfaces 13 (2021) 23662-23674.
    [19]
    Q. Ma, H. Cheng, Y. Yu, Y. Huang, Q. Lu, S. Han, J. Chen, R. Wang, A.G. Fane, H. Zhang, Small 13 (2017) 1700391.
    [20]
    Z. Gao, S. Zhou, Y. Zhou, H. Wan, C. Zhang, B. Yao, T. Chen, Colloid. Surface. A. 613 (2021) 126122.
    [21]
    A. Karimi, I. Kazeminezhad, S. Azizi, Ceram. Int. 45 (2019) 3441-3448.
    [22]
    C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energy Environ. Sci. 7 (2014) 2831-2867.
    [23]
    G. Mamba, A.K. Mishra, Appl. Catal. B-Environ. 198 (2016) 347-377.
    [24]
    Z. Chen, J. Zeng, J. Di, D. Zhao, M. Ji, J. Xia, H. Li, Green Energy Environ. 2 (2017) 124-133.
    [25]
    X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci. 10 (2017) 402-434.
    [26]
    S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10 (2011) 911-921.
    [27]
    E.M. Zahran, N.M. Bedford, M.A. Nguyen, Y.-J. Chang, B.S. Guiton, R.R. Naik, L.G. Bachas, M.R. Knecht, J. Am. Chem. Soc. 136 (2014) 32-35.
    [28]
    S. Patnaik, D.P. Sahoo, K. Parida, Renew. Sust. Energ. Rev. 82 (2018) 1297-1312.
    [29]
    A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li, Y. Yan, J. Mater. Chem. A 7 (2019) 8491-8502.
    [30]
    Y. Wei, Y. Zhu, Y. Jiang, Chem. Eng. J. 356 (2019) 915-925.
    [31]
    L. Ji, L. Yan, M. Chao, M. Li, J. Gu, M. Lei, Y. Zhang, X. Wang, J. Xia, T. Chen, Y. Nie, T. Chen, Small 17 (2021) 2007122.
    [32]
    S. Gao, Y. Zhu, J. Wang, F. Zhang, J. Li, J. Jin, Adv. Funct. Mater. 28 (2018) 1801944.
    [33]
    J. Xu, X. Feng, P. Chen, C. Gao, J. Membrane Sci. 413 (2012) 62-69.
    [34]
    G. Wang, Y. Ling, D.A. Wheeler, K.E.N. George, K. Horsley, C. Heske, J.Z. Zhang, Y. Li, Nano Lett. 11 (2011) 3503-3509.
    [35]
    X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.-T.F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P.M. Ajayan, Adv. Energy Mater. 7 (2017) 1700025.
    [36]
    M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, ACS Nano 4 (2010) 681-688.
    [37]
    J.-C. Wang, J. Ren, H.-C. Yao, L. Zhang, J.-S. Wang, S.-Q. Zang, L.-F. Han, Z.-J. Li, J. Hazard. Mater. 311 (2016) 11-19.
    [38]
    K.M. Kwon, I.G. Kim, K.Y. Lee, H. Kim, M.S. Kim, W.I. Cho, J. Choi, I.W. Nah, J. Ind. Eng. Chem. 69 (2019) 39-47.
    [39]
    J. Chen, T. Zhu, X. Yang, H. Yang, X. Lou, J. Am. Chem. Soc. 132 (2010) 13162-13164.
    [40]
    Q. Ma, H. Li, Y. Liu, M. Liu, X. Fu, S. Chu, H. Li, J. Guo, Curr. Appl. Phys. 21 (2021) 161-169.
    [41]
    Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, Adv. Mater. 17 (2005) 2993-2997.
    [42]
    D. Lu, T. Zhang, L. Gutierrez, J. Ma, J.-P. Croue, Environ. Sci. Technol. 50 (2016) 4668-4674.
    [43]
    S. Yang, Y. Xu, Y. Sun, G. Zhang, D. Gao, CrystEngComm 14 (2012) 7915-7921.
    [44]
    Y. Xu, S. Huang, M. Xie, Y. Li, L. Jing, H. Xu, Q. Zhang, H. Li, New J. Chem. 40 (2016) 3413-3422.
    [45]
    Y. Hou, F. Zuo, A. Dagg, P. Feng, Nano Lett. 12 (2012) 6464-6473.
    [46]
    S. Han, L. Hu, Z. Liang, S. Wageh, A.A. Al-Ghamdi, Y. Chen, X. Fang, Adv. Funct. Mater. 24 (2014) 5719-5727.
    [47]
    Z.W. Seh, S. Liu, M. Low, S.-Y. Zhang, Z. Liu, A. Mlayah, M.-Y. Han, Adv. Mater. 24 (2012) 2310-2314.
    [48]
    Y. Qu, X. Duan, Chem. Soc. Rev. 42 (2013) 2568-2580.
    [49]
    A. Banisharif, A.A. Khodadadi, Y. Mortazavi, A.A. Firooz, J. Beheshtian, S. Agah, S. Menbari, Appl. Catal. B-Environ. 165 (2015) 209-221.
    [50]
    N. Li, Y. Jin, X. Hua, K. Wang, J. Xu, M. Chen, F. Teng, J. Mol. Catal. A-Chem. 395 (2014) 428-433.
    [51]
    C.A. Dehner, L. Barton, P.A. Maurice, J.L. Dubois, Environ. Sci. Technol. 45 (2011) 977-983.
    [52]
    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7 (2012) 6003-6009.
    [53]
    Y. Li, W. Zhang, J. Niu, Y. Chen, ACS Nano 6 (2012) 5164-5173.
    [54]
    Y.A. Nor, L. Zhou, A.K. Meka, C. Xu, Y.T. Niu, H.W. Zhang, N. Mitter, D. Mahony, C.Z. Yu, Adv. Funct. Mater. 26 (2016) 5408-5418.
    [55]
    N. Liu, Y. Cao, X. Lin, Y. Chen, L. Feng, Y. Wei, ACS Appl. Mater. Interfaces 6 (2014) 12821-12826.
    [56]
    Z. Xu, L. Li, J. Liu, C. Dai, W. Sun, J. Chen, Z. Zhu, M. Zhao, H. Zeng, J. Colloid Interf. Sci. 608 (2022) 702-710.
    [57]
    J. Wang, X. Zhang, P. Yu, J. Clean. Prod. 347 (2022) 131302.
    [58]
    D.-L. Zhou, D. Yang, D. Han, Q. Zhang, F. Chen, Q. Fu, J. Membrane Sci. 620 (2021) 118898.
    [59]
    W. Kong, F. Li, Y. Pan, X. Zhao, ACS Appl. Mater. Interfaces 13 (2021) 35142-35152.
    [60]
    L. Vasquez, A. Davis, F. Gatto, M.N. An, F. Drago, P.P. Pompa, A. Athanassiou, D. Fragouli, Sep. Purif. Technol. 255 (2021) 117748.
    [61]
    C. Ao, R. Hu, J. Zhao, X. Zhang, Q. Li, T. Xia, W. Zhang, C. Lu, Chem. Eng. J. 338 (2018) 271-277.
    [62]
    J. Dai, L. Wang, Y. Wang, S. Tian, X. Tian, A. Xie, R. Zhang, Y. Yan, J. Pan, ACS Appl. Mater. Interfaces 12 (2020) 4482-4493.
    [63]
    Z.-Y. Luo, S.-S. Lyu, D.-C. Mo, ACS Omega 4 (2019) 20486-20492.
    [64]
    B. Wang, J.-J. Yin, X. Zhou, I. Kurash, Z. Chai, Y. Zhao, W. Feng, J. Phys. Chem. C 117 (2013) 383-392.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (345) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return