Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Xuewen Wu, Shaolun Cui, Minfei Fei, Sheng Liu, Xueping Gao, Guoran Li. Inverse-opal structured TiO2 regulating electrodeposition behavior to enable stable lithium metal electrodes. Green Energy&Environment, 2023, 8(6): 1664-1672. doi: 10.1016/j.gee.2022.03.010
Citation: Xuewen Wu, Shaolun Cui, Minfei Fei, Sheng Liu, Xueping Gao, Guoran Li. Inverse-opal structured TiO2 regulating electrodeposition behavior to enable stable lithium metal electrodes. Green Energy&Environment, 2023, 8(6): 1664-1672. doi: 10.1016/j.gee.2022.03.010

Inverse-opal structured TiO2 regulating electrodeposition behavior to enable stable lithium metal electrodes

doi: 10.1016/j.gee.2022.03.010
  • Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2 membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO2 walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.

     

  • loading
  • [1]
    S. H. Chung, A. Manthiram, Adv. Mater. 31(2019) 1901125.
    [2]
    X. Shen, X. Q. Zhang, F. Ding, J. Q, Huang, R, Xu, X. Chen, C. Yan, F. Y. Su, C. M. Chen, X. J. Liu, Q. Zhang, Energy. Mater. Adv. (2021) 1205324.
    [3]
    X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 117(2017) 10403-10473.
    [4]
    Z. Hou, J. L. Zhang, W. H. Wang, Q. W. Chen, B. H. Li, C. L. Li, J. Energy. Chem. 45(2020) 7-17.
    [5]
    Y. L. Cao, M. Li, J. Lu, J. Liu, K. Amine, Nat. Nanotechnol. 14(2019) 200-207.
    [6]
    X. Q. Meng, Y. L. Xu, H. B. Cao, X. Lin, P. G. Ning, Y. Zhang, Y. G. Garcia, Z. Sun, Green Energy Environ. 5(2020) 22-36.
    [7]
    X. H. Wu, K. C. Pan, M. M. Jia, Y. F. Ren, H. Y. He, L. Zhang, S. J. Zhang, Green Energy Environ. 4(2019) 360-374.
    [8]
    J. W. Zhang, Y. Y. Zhong, S. J. Wang, D. M. Han, M. Xiao, L. Y. Sun, Y. Z. Meng, ACS Appl. Energy. Mater. 4(2021) 862-869.
    [9]
    S. L. Cui, X. W. Wu, Y. Yang, M. F. Fei, S. Liu, G. R. Li, X. P. Gao, ACS Energy. Lett. 7(2022) 42-52.
    [10]
    N. Angulakshmi, R. B. Dhanalakshmi, S. Sathya, J. H. Ahn, A. M. Stephan, Batter. Supercaps 4(2021) 1064-1095.
    [11]
    A. Bayaguud, X. Luo, Y. P. Fu, C. B. Zhu, ACS Energy. Lett. 5(2020) 3012-3020.
    [12]
    Y. Xiao, R. Xu, L. Xu, J. F. Ding, J. Q. Huang, Energy. Mater. 1(2021) 100013.
    [13]
    X. W. Wu, S. L. Cui, S. Liu, G. R. Li, X. P. Gao, ACS Appl. Mater Interfaces 13(2021) 6249-6256.
    [14]
    S. N. Liu, W. C. Zhang, Green Energy Environ. 6(2021) 791-793.
    [15]
    Z. W. Zhu, Z. Y. Wang, S. Liu, G. R. Li, X. P. Gao, Electrochim. Acta 379(2021) 138152.
    [16]
    J. Zheng, M. S. Kim, Z. Tu, S. Choudhury, T. Tang, L. A. Archer, Chem. Soc. Rev. 49(2020) 2701-2750.
    [17]
    M. Z. An, Electroplating Theory and Technology, Harbin Institute of Technology Press, Harbin, 2004.
    [18]
    X. B. Ke, H. Y. Zhu, X. P. Gao, J. W. Liu, Z. F. Zheng, Adv. Mater. 19(2007) 4325-4325.
    [19]
    R. Tian, X. Feng, H. Duan, P. Zhang, H. Li, H. Liu, L. Gao, ChemSusChem. 11(2018) 3243-3252.
    [20]
    D. McNulty, A. Lonergan, S. O'Hanlon, C. O'Dwyer, Solid. State. Ionics 314(2017) 195-203.
    [21]
    G. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. B. Yao, H. T. Wang, W. Y. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 9(2014) 618-623.
    [22]
    W. Liu, D. C. Lin, A. Pei, Y. Cui, J. Am. Chem. Soc. 138(2016) 15443-15450.
    [23]
    X. G. Qiu, W. Liu, J. D. Liu, J. Z. Li, K. Zhang, F. Y. Cheng, Acta. Phys-Chim. Sin. 37(2021) 2009012.
    [24]
    H. R. Cheng, Q. J. Sun, L. L. Li, Y. G. Zou, Y. Q. Wang, T. Cai, F. Zhao, G. Liu, Z. Ma, W. Wahyudi, Q. Li, J. Ming, ACS Energy. Lett. 7(2022) 490-513.
    [25]
    K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B 103(1999) 519-524.
    [26]
    C. L. Olson, J. Nelson, M. S. Islam, J. Phys. Chem. B 110(2006) 9995-10001.
    [27]
    A. Henningsson, H. Rensmo, A. Sandell, H. Siegbahn, S. Sodergren, H. Lindstrom, A. Hagfeldt, J. Phys. Chem. 118(2003)5607-5612.
    [28]
    G. M. Wang, Y. Yang, D. D. Han, Y. Li, Nano. Today 13(2017) 23-39.
    [29]
    H. J. Sun, Q. J. Zheng, W. C. Lu, J. Zhao, J. Phys. Condens. Matter. 31(2019) 114004.
    [30]
    J. P. Contour, A. Salesse, M. Froment, M. Garreau, J. Thevenin, D. Warin, J. Microsc. Spectrosc. Electron. 4(1979) 483-491.
    [31]
    A. P. Dementjev, O. P. Ivanova, L. A. Vasilyev, A. V. Naumkin, D. M. Nemirovsky, D. Y. Shalaev, J. Vac. Sci. Technol. A 12(1994) 423-427.
    [32]
    R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, J. Appl. Phys. 75(1994) 2945-2951.
    [33]
    G. P. Lopez, D. G. Castner, B. D. Ratner, Surf. Interface Anal. 17(1991) 267-272.
    [34]
    F. Werfel, O. Brummer, Phys. Scr. 28(1983) 92.
    [35]
    D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, R. Dormoy, Surf. Sci. 254(1991) 81-89.
    [36]
    Y. Saito, T. Umecky, J. Niwa, T. Sakai, S. Maeda, J. Phys. Chem. B 111(2007) 11794-11802.
    [37]
    Y. Saito, K. Hirai, H. Katayama, T. Abe, M. Yokoe, K. Aoi, M. Okada, Macromolecules 38(2005) 6485-6491.
    [38]
    H. Kataoka, Y. Saito, M. Tabuchi, Y. Wada, T. Sakai, Macromolecules 35(2002) 6239-6244.
    [39]
    Z. Y. Wang, L. Zhou, X. W. Lou, Adv. Mater. 24(2012) 1903-1911.
    [40]
    D. Deng, M. G. Kim, J. Y. Lee, J. Cho, Energy. Environ. Sci. 2(2009) 818-837.
    [41]
    Y D, Gamburg, G. Zangari, Theory and Practice of Metal Electrodeposition. Springer, New York, 2011.
    [42]
    Y. Aihara, T. Bando, H. Nakagawa, H. Yoshida, K. Hayamizu, E. Akiba, W. S. Price, J. Electrochem. Soc. 151(2004) A119.
    [43]
    C. P. Yang, Y. g. Yao, S. M. He, H. Xie, E. Hitz, L. B. Hu, Adv. Mater. 29(2017) 1702714.
    [44]
    A. Kushima, K. P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M. Z. Bazant, J. Li, Nano. Energy 32(2016) 271-279.
    [45]
    S. Y. Yao, L. Y. Zeng, J. Liu, Mater. Rep. 36 (2022) 21010216.
    [46]
    B. Ding, L. F. Shen, G. Y. Xu, P. Nie, X. G. Electrochim. Acta 107(2013) 78-84.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (209) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return