Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Hao Peng, Zichen Di, Pan Gong, Fengling Yang, Fangqin Cheng. Techno-economic assessment of a chemical looping splitting system for H2 and CO Co-generation. Green Energy&Environment, 2023, 8(1): 338-350. doi: 10.1016/j.gee.2022.02.012
Citation: Hao Peng, Zichen Di, Pan Gong, Fengling Yang, Fangqin Cheng. Techno-economic assessment of a chemical looping splitting system for H2 and CO Co-generation. Green Energy&Environment, 2023, 8(1): 338-350. doi: 10.1016/j.gee.2022.02.012

Techno-economic assessment of a chemical looping splitting system for H2 and CO Co-generation

doi: 10.1016/j.gee.2022.02.012
  • The natural gas (NG) reforming is currently one of the low-cost methods for hydrogen production. However, the mixture of H2 and CO2 in the produced gas inevitably includes CO2 and necessitates the costly CO2 separation. In this work, a novel double chemical looping involving both combustion (CLC) and sorption-enhanced reforming (SE-CLR) was proposed towards the co-production of H2 and CO (CLC-SECLRHC) in two separated streams. CLC provides reactant CO2 and energy to feed SECLRHC, which generates hydrogen in a higher purity, as well as the calcium cycle to generate CO in a higher purity. Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness. Studies revealed that the optimal molar ratios of oxygen carrier (OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0, respectively. The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs. The desired temperatures of fuel reactor (FR) and reforming reactor (RR) should be 850 ℃ and 600 ℃, respectively. The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor, and the NG split ratio for reforming and combustion was 0.53:0.47. Under the optimal conditions, the H2 purity, the H2 yield and the CH4 conversion efficiency were 98.76%, 2.31 mol mol-1 and 97.96%, respectively. The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45% in terms of the total hydrogen in both steam and NG. The exergy efficiency of the overall process reached 70.28%. In terms of the conventional plant capacity (75×103 t y-1) and current raw materials price (2500 $ t-1), the payback period can be 6.2 years and the IRR would be 11.5, demonstrating an economically feasible and risk resistant capability.

     

  • loading
  • [1]
    G. Yang, S. Guan, S. Mehdi, Y. Fan, B. Liu, B. Li, Green Energy Environ. 6 (2021) 236-243
    [2]
    A. Hafizi, M. Rahimpour, S. Hassanajili, Appl. Energy 169 (2016) 629-641
    [3]
    H. Li, S. Wu, C. Dang, G. Yang, Y. Cao, H. Wang, F. Peng, H. Yu, Green Energy Environ. 6 (2021) 771-779
    [4]
    L. Zeng, D. Wei, S. Toan, Z. Sun, Z. Sun, Green Energy Environ. 7 (2020) 145-155
    [5]
    A. Antzara, E. Heracleous, D. Bukur, A. Lemonidou, Int. J. Greenh. Gas Con. 32 (2015) 115-128
    [6]
    B. Dou, H. Zhang, G. Cui, Z. Wang, B. Jiang, K. Wang, H. Chen, Y. Xu, Energy Convers. Manage. 155 (2018) 243-252
    [7]
    N. Saithong, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, Energy Convers. Manage. 180 (2019) 325-337
    [8]
    L.C. Buelens, A. Dharanipragada, H. Poelman, Z. Zhou, G.B. Marin, V.V. Galvita, J. CO2 Util. 29 (2019) 36-45
    [9]
    Z. Di, Y. Cao, F. Yang, F. Cheng, K. Zhang, Fuel 226 (2018) 618-626
    [10]
    Y. Qiu, L. Ma, Q. Kong, M. Li, D. Cui, S. Zhang, D. Zeng, R. Xiao, Green Energy Environ. 6 (2021) 780-789
    [11]
    Z. Di, D. Yilmaz, A. Biswas, F. Cheng, H. Leion, Appl. Energy 307 (2022) 118298
    [12]
    Y. Kang, M. Tian, C. Huang, J. Lin, B. Hou, X. Pan, L. Li, A.I. Rykov, J. Wang, X. Wang, ACS Catal. 9 (2019) 8373-8382
    [13]
    C. Luo, B. Dou, H. Zhang, D. Liu, L. Zhao, H. Chen, Y. Xu, Energy Convers. Manage. 238 (2021) 114166
    [14]
    L.C. Buelens, V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Science 354 (2016) 449-452
    [15]
    J. Hu, L. Buelens, S.-A. Theofanidis, V.V. Galvita, H. Poelman, G.B. Marin, J. CO2 Util. 16 (2016) 8-16
    [16]
    V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Appl. Catal. B-Environ. 164 (2015) 184-191
    [17]
    Z. Di, F. Yang, Y. Cao, K. Zhang, Y. Guo, S. Gao, F. Cheng, Fuel 253 (2019) 327-338
    [18]
    N.A. Dharanipragada, L.C. Buelens, H. Poelman, E. De Grave, V.V. Galvita, G.B. Marin, J. Mater. Chem. A 3 (2015) 16251-16262
    [19]
    Z. Di, Y. Cao, F. Yang, K. Zhang, F. Cheng, Energy Convers. Manage. 192 (2019) 171-179
    [20]
    J. Pasel, S. Wohlrab, S. Kreft, M. Rotov, K. Lohken, R. Peters, D. Stolten, J. Power Sources 325 (2016) 51-63
    [21]
    J.M. Mayne, K.A. Dahlberg, T.A. Westrich, A.R. Tadd, J.W. Schwank, Appl Catal A-Gen. 400 (2011) 203-214
    [22]
    J.U. Wang, B. Liang, Parnas, Richard, Fuel 107 (2013) 539-546
    [23]
    H. Leion, T. Mattisson, A. Lyngfelt, Energy Procedia 1 (2009) 447-453
    [24]
    A. Lyngfelt, B. Leckner, T. Mattisson, Chem. Eng. Sci. 56 (2001) 3101-3113
    [25]
    M.H. Gong, Q. Yi, H. Yi, G.S. Wu, Y.H. Hao, F. Jie, W.Y. Li, Energy Convers. Manage. 133 (2017) 318-331
    [26]
    D. Xiang, S. Liu, J. Xiang, Y. Cao, Energy Convers. Manage. 152 (2017) 239-249
    [27]
    L. Zhu, J. Fan, Int. J. Energ. Res. 39 (2015) 356-369
    [28]
    X. Hou, L. Yang, K. Hou, H. Shi, L. Feng, G. Suo, X. Ye, L. Zhang, Y. Yang, Green Energy Environ. 6 (2021) 124-137
    [29]
    P. Chiesa, S. Consonni, T. Kreutz, R. Williams, Int. J. Hydrogen Energ. 30 (2005) 747-767
    [30]
    I.N. Zaini, A. Nurdiawati, M. Aziz, Appl. Energy 207 (2017) 134-145
    [31]
    S. Alam, J.P. Kumar, K.Y. Rani, C. Sumana, J. Clean Prod. 162 (2017) 687-701
    [32]
    D. Xiang, S. Zhao, Energy Convers. Manage. 172 (2018) 1-8
    [33]
    M. Ryden, P. Ramos, Fuel Process. Technol. 96 (2012) 27-36
    [34]
    S. Abanades, I. Villafan-Vidales, Int. J. Energ. Res. 37 (2013) 598-608
    [35]
    J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, F. Luis, Prog. Energy Combust. Sci. 38 (2012) 215-282
    [36]
    Z. Lin, J. Fan, Int. J. Energ. Res. 39 (2015) 356-369
    [37]
    X. Chen, G. Liu, W. Jin, Green Energy Environ. 6 (2021) 176-192
    [38]
    X. Dong, L. Shuai, J. Xiang, C. Yan, Energy Convers. Manage. 152 (2017) 239-249
    [39]
    D. Xiang, Y. Zhou, Appl. Energy 229 (2018) 1024-1034
    [40]
    R. Lopez, C. Fernandez, O. Martinez, M.E. Sanchez, Fuel Process. Technol. 142 (2016) 296-304
    [41]
    W.-H. Chen, M.-R. Lin, J.-J. Lu, Y. Chao, T.-S. Leu, Int. J. Hydrogen Energ. 35 (2010) 11787-11797
    [42]
    X. Dong, J. Xiang, S. Zhe, C. Yan, Energy 140 (2017) 78-91
    [43]
    H. Zhou, S. Yang, H. Xiao, Q. Yang, Q. Yu, G. Li, Energy 109 (2016) 201-210
    [44]
    P. Haro, F. Trippe, R. Stahl, E. Henrich, Appl. Energy 108 (2013) 54-65
    [45]
    Z. Li, S. Hu, D. Chen, Y. Li, J. Yong, Ind. Eng. Chem. Res. 48 (2009) 4101-4108
    [46]
    A.K. Olaleye, M. Wang, Fuel 124 (2014) 221-231
    [47]
    G. Diglio, D.P. Hanak, P. Bareschino, F. Pepe, F. Montagnaro, V. Manovic, Appl. Energy 210 (2018) 41-51
    [48]
    M.N. Khan, T. Shamim, Int. J. Hydrogen Energ. 41 (2016) 22677-22688
    [49]
    G. Li, Z. Liu, T. Liu, J. Shan, Y. Fang, Z. Wang, Energy Convers. Manage. (2018) 552-559
    [50]
    P. Krawczyk, N. Howaniec, A. Smolinski, Energy 114 (2016) 1207-1213
    [51]
    Y. Hu, J. Wu, Y. Han, W. Xu, L. Zhang, X. Xia, C. Huang, Y. Zhu, M. Tian, Y. Su, Chinese J. Catal. 42 (2021) 2049-2058
    [52]
    C. Ruan, Z.-Q. Huang, J. Lin, L. Li, X. Liu, M. Tian, C. Huang, C.-R. Chang, J. Li, X. Wang, Energ. Environ. Sci. 12 (2019) 767-779
    [53]
    S. Chu, P. Ou, R.T. Rashid, Y. Pan, D. Liang, H. Zhang, J. Song, Green Energy Environ. 7 (2022) 545–553.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return