Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Ao Ma, Hengjiang Cong, Hexiang Deng. Multivariate MOF for optimizing atmospheric water harvesting. Green Energy&Environment, 2022, 7(4): 575-577. doi: 10.1016/j.gee.2022.02.004
Citation: Ao Ma, Hengjiang Cong, Hexiang Deng. Multivariate MOF for optimizing atmospheric water harvesting. Green Energy&Environment, 2022, 7(4): 575-577. doi: 10.1016/j.gee.2022.02.004

Multivariate MOF for optimizing atmospheric water harvesting

doi: 10.1016/j.gee.2022.02.004
  • Atmospheric water harvesting offers a powerful and promising solution to address the problem of global freshwater scarcity. In the past decade, significant progress has been achieved in utilizing hydrolytically stable metal-organic frameworks as recyclable water-sorbent materials under low relative humidity, especially in those arid areas. Recently, Yaghi's group has employed a combined crystallographic and theoretical technique to decipher the water filling mechanism in MOF-303, where the polar organic linkers rather than the inorganic units of MOF are demonstrated as the key factor. Hence, the hydrophilic strength of the water-binding pocket in MOFs can be optimized through the approach of multivariate modulations, resulting in enhanced water harvesting properties.

     

  • loading
  • [1]
    P.H. Gleick, Water in Crisis:A Guide to the Worlds Fresh Water Resources, Oxford University Press, New York, 1993
    [2]
    B. Van der Bruggen, C. Vandecasteele, Desalination 143 (2002) 207-218
    [3]
    R.T. Kingsford, Austral Ecol. 25 (2000) 109-127
    [4]
    M.J. Kalmutzki, C.S. Diercks, O.M. Yaghi, Adv. Mater. 30 (2018) 1704304
    [5]
    N. Hanikel, M.S. Prevot, O.M. Yaghi, Nat. Nanotechnol. 15 (2020) 348-355
    [6]
    W. Xu, O.M. Yaghi, ACS Cent. Sci. 6 (2020) 1348-1354
    [7]
    H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341 (2013) 1230444
    [8]
    N.C. Burtch, H. Jasuja, K.S. Walton, Chem. Rev. 114 (2014) 10575-10612
    [9]
    H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, J. Am. Chem. Soc. 136 (2014) 4369-4381
    [10]
    H. Kim, S. Yang, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, A.S. Umans, O.M. Yaghi, E.N. Wang, Science 356 (2017) 430-434
    [11]
    A.J. Rieth, S. Yang, E.N. Wang, M. Dinca, ACS Cent. Sci. 3 (2017) 668-672
    [12]
    S.M.T. Abtab, D. Alezi, P.M. Bhatt, A. Shkurenko, Y. Belmabkhout, H. Aggarwal, L.J. Weselinski, N. Alsadun, U. Samin, M.N. Hedhili, M. Eddaoudi, Chem, 4 (2018) 94-105
    [13]
    Z. Chen, P. Li, X. Zhang, P. Li, M.C. Wasson, T. Islamoglu, J.F. Stoddart, O,M. Farha, J. Am. Chem. Soc. 141 (2019) 2900-2905
    [14]
    N. Hanikel, M.S. Prevot, F. Fathieh, E.A. Kapustin, H. Lyu, H. Wang, N.J. Diercks, T.G. Glover, O.M. Yaghi, ACS Cent. Sci. 5 (2019) 1699-1706
    [15]
    N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, O.M. Yaghi, Science 374 (2021) 454-459
    [16]
    H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Science 327 (2010) 846-850
    [17]
    B. Tu, Q. Pang, D. Wu, Y. Song, L. Weng, Q. Li, J. Am. Chem. Soc. 136 (2014) 14465-14471
    [18]
    W. Xu, B. Tu, Q. Liu, Y. Shu, C.-C. Liang, C.S. Diercks, O.M. Yaghi, Y.-B. Zhang, H. Deng, Q. Li, Nat. Rev. Mater. 5 (2020) 764-779
    [19]
    Q. Liu, H. Cong, H. Deng, J. Am. Chem. Soc. 138 (2016) 13822-13825
    [20]
    Z. Dong, Y. Sun, J. Chu, X. Zhang, H. Deng, J. Am. Chem. Soc. 139 (2017) 14209-14216
    [21]
    H. Jia, Q. Han, W. Luo, H. Cong, H. Deng, Chem Catal. 2 (2022) 84-101
    [22]
    J.-P. Zhang, A.-X. Zhu, R.-B. Lin, X.-L. Qi, X.-M. Chen, Adv. Mater. 23 (2011) 1268-1271
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (271) PDF downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return