Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Cui Ouyang, Jianwei Li, Yaqi Qu, Song Hong, Songbo He. Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst. Green Energy&Environment, 2023, 8(4): 1161-1173. doi: 10.1016/j.gee.2022.01.007
Citation: Cui Ouyang, Jianwei Li, Yaqi Qu, Song Hong, Songbo He. Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst. Green Energy&Environment, 2023, 8(4): 1161-1173. doi: 10.1016/j.gee.2022.01.007

Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst

doi: 10.1016/j.gee.2022.01.007
  • Catalytic oxidation of benzene with N2O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixed-bed reactor was investigated. The spent catalyst was in-situ regenerated by an oxidative treatment using N2O and in total 10 reaction-regeneration cycles were performed. A 100% N2O conversion, 93.3% phenol selectivity, and high initial phenol formation rate of 16.49 ± 0.06 mmolphenol gcatalyst-1 h-1 at time on stream (TOS) of 5 min, and a good phenol productivity of 147.06 mmolphenol gcatalyst-1 during catalyst life-time of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst. With the reaction-regeneration cycle, N2O conversion is fully recovered within TOS of 3 h, moreover, the phenol productivity was decreased ca. 2.2 ± 0.8% after each cycle, leading to a total phenol productivity of ca. 0.44 tonphenol kgcatalyst-1 estimated for 300 cycles. Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h (0.28 mgc gcatalyst-1 min-1) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc gcatalyst-1 min-1. Among others (e.g., the decrease of textural property and acidity), the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation. Besides these reversible deactivation characteristics related to coking, the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle. The latter is reflected by a further decreased amount of the active Fe-O-Al sites, which agglomerate on catalyst surface with the cycle, likely associated with the hard coke residue that is not completely removed by the regeneration.

     

  • loading
  • [1]
    C. Perego, A. de Angelis, P. Pollesel, R. Millini, Ind. Eng. Chem. Res. 60 (2021) 6379-6402.
    [2]
    L. Dessbesell, M. Paleologou, M. Leitch, R. Pulkki, C. (Charles) Xu, Renew. Sustain. Energy Rev. 123 (2020) 109768.
    [3]
    G.I. Panov, Cattech 4 (2000) 18-31.
    [4]
    K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E. V. Starokon, G.I. Panov, J. Catal. 207 (2002) 341-352.
    [5]
    G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Catal. Today 41 (1998) 365--385.
    [6]
    J. Perez-Ramirez, F. Kapteijn, K. Schoffel, J.A. Moulijn, Appl. Catal. B Environ. 44 (2003) 117--151.
    [7]
    S.-J. Lee, I.-S. Ryu, B.-M. Kim, S.-H. Moon, Int. J. Greenh. Gas Control 5 (2011) 167--176.
    [8]
    Q. Zhu, R.M. Van Teeffelen, R.A. Van Santen, E.J.M. Hensen, J. Catal. 221 (2004) 575-583.
    [9]
    E.J.M. Hensen, Q. Zhu, R.A.J. Janssen, P.C.M.M. Magusin, P.J. Kooyman, R.A. Van Santen, J. Catal. 233 (2005) 136-146.
    [10]
    H. Xin, A. Koekkoek, Q. Yang, R. Van Santen, C. Li, E.J.M. Hensen, Chem. Commun. (2009) 7590-7592.
    [11]
    B.S. Rana, B. Singh, R. Kumar, D. Verma, M.K. Bhunia, A. Bhaumik, A.K. Sinha, J. Mater. Chem. 20 (2010) 8575-8581.
    [12]
    L. Meng, X. Zhu, E.J.M. Hensen, ACS Catal. 7 (2017) 2709-2719.
    [13]
    C. Ouyang, Y. Li, J. Li, Catalysts 9 (2019) 44.
    [14]
    I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-minsker, Appl. Catal. A Gen. 319 (2007) 128-136.
    [15]
    R. Navarro, S. Lopez-Pedrajas, D. Luna, J.M. Marinas, F.M. Bautista, Appl. Catal. A Gen. 474 (2014) 272-279.
    [16]
    E.J.M. Hensen, Q. Zhu, R.A. Van Santen, J. Catal. 233 (2005) 136-146.
    [17]
    E.J.M. Hensen, Q. Zhu, R.A. Van Santen, J. Catal. 220 (2003) 260-264.
    [18]
    E. Hensen, Q. Zhu, P.H. Liu, K.J. Chao, R. Van Santen, J. Catal. 226 (2004) 466-470.
    [19]
    V.S. Chernyavsky, L. V. Pirutko, A.K. Uriarte, A.S. Kharitonov, G.I. Panov, J. Catal. 245 (2007) 466-469.
    [20]
    N.A. Kachurovskaya, G.M. Zhidomirov, E.J.M. Hensen, R.A. Van Santen, Catal. Letters 86 (2003) 25-31.
    [21]
    M.F. Fellah, E.A. Pidko, R.A. Van Santen, I. Onal, J. Phys. Chem. C 115 (2011) 9668-9680.
    [22]
    E.J.M. Hensen, Q. Zhu, M.M.R.M. Hendrix, A.R. Overweg, P.J. Kooyman, M. V. Sychev, R.A. Van Santen, J. Catal. 221 (2004) 560-574.
    [23]
    M. Hafele, A. Reitzmann, D. Roppelt, G. Emig, Appl. Catal. A Gen. 150 (1997) 153-164.
    [24]
    L. V. Pirutko, A.K. Uriarte, V.S. Chernyavsky, A.S. Kharitonov, G.I. Panov, Microporous Mesoporous Mater. 48 (2001) 345-353.
    [25]
    L.V. Pirutko, V.S. Chernyavsky, A.K. Uriarte, G.I. Panov, Appl. Catal. A Gen. 227 (2002) 143-157.
    [26]
    A.J.J. Koekkoek, W. Kim, V. Degirmenci, H. Xin, R. Ryoo, E.J.M. Hensen, J. Catal. 299 (2013) 81-89.
    [27]
    A.J.J. Koekkoek, H. Xin, Q. Yang, C. Li, E.J.M. Hensen, Microporous Mesoporous Mater. 145 (2011) 172-181.
    [28]
    D. Meloni, R. Monaci, V. Solinas, G. Berlier, S. Bordiga, I. Rossetti, C. Oliva, L. Forni, J. Catal. 214 (2003) 169-178.
    [29]
    D.P. Ivanov, V.I. Sobolev, G.I. Panov, Appl. Catal. A Gen. 241 (2003) 113-121.
    [30]
    M.H. Sayyar, R.J. Wakeman, T. Toos, I. Mfg, Chem. Eng. Res. Des. 86 (2008) 517-526.
    [31]
    A.A. Ivanov, V.S. Chernyavsky, M.J. Gross, A.S. Kharitonov, A.K. Uriarte, G.I. Panov, Appl. Catal. A Gen. 249 (2003) 327-343.
    [32]
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem 57 (1985) 603-619.
    [33]
    S. He, K. Zuur, D.S. Santosa, A. Heeres, C. Liu, E. Pidko, H.J. Heeres, Appl. Catal. B Environ. 281 (2021) 119467.
    [34]
    K.A. Cychosz, R. Guillet-Nicolas, J. Garcia-Martinez, M. Thommes, Chem. Soc. Rev. 46 (2017) 389-414.
    [35]
    Z. Yang, Y. Xia, R. Mokaya, Adv. Mater. 16 (2004) 727-732.
    [36]
    L. Sun, Y. Wang, H. Chen, C. Sun, F. Meng, F. Gao, X. Wang, Catal. Today 316 (2018) 91-98.
    [37]
    S. He, I. Muizebelt, A. Heeres, N.J. Schenk, R. Blees, H.J. Heeres, Appl. Catal. B Environ. 235 (2018) 45-55.
    [38]
    S. He, H. Goldhoorn, Z. Tegudeer, A. Chandel, H. A, M.C.A. Stuart, H.J. Heeres, Chem. Eng. J. (2022).
    [39]
    S. He, F.G.H. Klein, T.S. Kramer, A. Chandel, Z. Tegudeer, A. Heeres, H.J. Heeres, ACS Sustain. Chem. Eng. 9 (2021) 1128-1141.
    [40]
    M.Y. Jeon, D. Kim, P. Kumar, P.S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H.S. Lee, K. Narasimharao, S.N. Basahel, S. Al-Thabaiti, W. Xu, H.J. Cho, E.O. Fetisov, R. Thyagarajan, R.F. Dejaco, W. Fan, K.A. Mkhoyan, J.I. Siepmann, M. Tsapatsis, Nature 543 (2017) 690-694.
    [41]
    J.L. Motz, H. Heinichen, W.F. Holderich, J. Mol. Catal. A Chem. 136 (1998) 175-184.
    [42]
    M. Rostamizadeh, F. Yaripour, Fuel 181 (2016) 537-546.
    [43]
    S. Brandenberger, O. Krocher, M. Casapu, A. Tissler, R. Althoff, Appl. Catal. B Environ. 101 (2011) 649-659.
    [44]
    K. Sun, H. Xia, E. Hensen, R. Vansanten, C. Li, J. Catal. 238 (2006) 186-195.
    [45]
    K. Sun, H. Xia, Z. Feng, R. van Santen, E. Hensen, C. Li, J. Catal. 254 (2008) 383-396.
    [46]
    G. Mul, J. Perez-Ramirez, F. Kapteijn, J.A. Moulijn, Catal. Letters 80 (2002) 129-138.
    [47]
    J.-P. Lange, Nat. Catal. 4 (2021) 186-192.
    [48]
    S. Kim, E. Sasmaz, J. Lauterbach, Appl. Catal. B Environ. 168-169 (2015) 212-219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return