Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Jianjun Chen, Rongqiang Yin, Gongda Chen, Junyu Lang, Xiaoping Chen, Xuefeng Chu, Junhua Li. Selective capture of Tl2O from flue gas with formation of p-n junction on V2O5-WO3/TiO2 catalyst under working conditions. Green Energy&Environment, 2023, 8(1): 4-9. doi: 10.1016/j.gee.2021.12.001
Citation: Jianjun Chen, Rongqiang Yin, Gongda Chen, Junyu Lang, Xiaoping Chen, Xuefeng Chu, Junhua Li. Selective capture of Tl2O from flue gas with formation of p-n junction on V2O5-WO3/TiO2 catalyst under working conditions. Green Energy&Environment, 2023, 8(1): 4-9. doi: 10.1016/j.gee.2021.12.001

Selective capture of Tl2O from flue gas with formation of p-n junction on V2O5-WO3/TiO2 catalyst under working conditions

doi: 10.1016/j.gee.2021.12.001
  • Thallium (Tl) compounds, highly toxic to biology, are usually released into flue gas during fossil/minerals combustion, and further distributed in water and soil. In this work, we fundamentally investigated the capture of gaseous Tl2O by industrial V2O5-WO3/TiO2 catalyst under working condition in Tl-containing flue gas. Experimental and theoretical results indicated that the Tl2O has significant electron-feeding capacity and easily donate electron to unoccupied orbitals of TiO2, leading to dismutation of Ti 2p and inartificial formation of p-n junction on TiO2 surface, which prompted Tl2O selectively interacted with TiO2 in flue gas. Herein, we proposed and verified an effective way to capture gaseous Tl2O, which offered almost the best choice to eliminate Tl emission from flue gas and expanded the function of the TiO2-based catalyst. The formation of p-n junction on commercial V2O5-WO3/TiO2 catalyst under working condition was revealed for the first time, which can be a valuable reference for both heterocatalysis and electro/photocatalysis.

     

  • loading
  • [1]
    M. Antonia Lopez Anton, D. Alan Spears, M.D. Somoano, M. Rosa Martinez Tarazona, Fuel 105 (2013) 13-18
    [2]
    E. Raffetti, M. Treccani, F. Donato, Chemosphere 218 (2019) 211-222
    [3]
    J. Liu, J. Wang, Y. Chen, X. Xie, J. Qi, H. Lippold, D. Luo, C. Wang, L. Su, L. He, Q. Wu, Environ. Pollut. 212 (2016) 77-89
    [4]
    J. Liu, X. Luo, Y. Sun, D.C.W. Tsang, J. Qi, W. Zhang, N. Li, M. Yin, J. Wang, H. Lippold, Y. Chen, G. Sheng, Environ. Int. 126 (2019) 771-790
    [5]
    O. Font, X. Querol, F. Plana, P. Coca, S. Burgos, F. Garcia Pena, Fuel 85 (2006) 2229-2242
    [6]
    M. Antonia Lopez-Anton, D. Alan Spears, M. Diaz-Somoano, L. Diaz, M. Rosa Martinez-Tarazona, Fuel 146 (2015) 51-55
    [7]
    O. Font, X. Querol, M. Izquierdo, E. Alvarez, N. Moreno, S. Diez, R. Alvarez-Rodriguez, C. Clemente-Jul, P. Coca, F. Garcia-Pena, Fuel 89 (2010) 3250-3261
    [8]
    R. Yan, D. Gauthier, G. Flamant, Fuel 80 (2001) 2217-2226
    [9]
    T. Viraraghavan, A. Srinivasan, in Encyclopedia of Environmental Health, ed. Nriagu, J., Elsevier, Oxford, Second edn., 2011, pp. 39-47
    [10]
    Z. Ning, E. Liu, D. Yao, T. Xiao, L. Ma, Y. Liu, H. Li, C. Liu, Sci. Total Environ. 758 (2021) 143577
    [11]
    Y. Cruz-Hernandez, M. Ruiz-Garcia, M. Villalobos, F.M. Romero, D. Meza-Figueroa, F. Garrido, E. Hernandez-Alvarez, T. Pi-Puig, Environ. Pollut. 237 (2018) 154-165
    [12]
    Y. Chen, C. Wang, J. Liu, J. Wang, J. Qi, Y. Wu, Sci. China Earth Sci. 56 (2013) 1502-1509
    [13]
    P. Lopez-Arce, J. Garcia-Guinea, F. Garrido, Chemosphere 181 (2017) 447-460
    [14]
    Q. Ma, L. Jia, X. Wang, P. Ning, L. Wang, L. Xu, S. Sun, Y. Ma, Y. Zhang, T. Lei, W. Liu, J. Hao, Ind. Eng. Chem. Res. 59 (2020) 12955-12963
    [15]
    J.-K. Lai, I.E. Wachs, ACS Catal. 8 (2018) 6537-6551
    [16]
    M. Zhu, J.-K. Lai, U. Tumuluri, M.E. Ford, Z. Wu, I.E. Wachs, ACS Catal. 7 (2017) 8358-8361
    [17]
    L.J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello, F. Bregani, J. Catal. 155 (1995) 117-130
    [18]
    X. Huang, D. Wang, Q. Yang, Y. Peng, J. Li, Appl. Catal. B Environ. 285 (2021) 119835
    [19]
    G. Li, K. Shen, L. Wang, Y. Zhang, H. Yang, P. Wu, B. Wang, S. Zhang, Appl. Catal. B Environ. 286 (2021) 119865
    [20]
    Y. Long, Y. Su, Y. Xue, Z. Wu, X. Weng, Environ. Sci. Technol. (2021)
    [21]
    C. Li, D. Brewe, J.-Y. Lee, Appl. Catal. B Environ. 270 (2020) 118854
    [22]
    Q. Liu, J. Mi, X. Chen, S. Wang, J. Chen, J. Li, Chem. Eng. J. 423 (2021) 130228
    [23]
    G.E. Mcguire, G.K. Schweitzer, T.A. Carlson, Inorg. Chem. 12 (1973) 2450-2453
    [24]
    J.A. Dean, Lange's Handbook of Chemistry, 15th edn., 1999
    [25]
    W.L. Holstein, J. Phys. Chem. 97 (1993) 4224-4230
    [26]
    D. Cubicciotti, F.J. Keneshea, J. Phys. Chem. 71 (1967) 808-814
    [27]
    A. Fujishima, K. Honda, Nature 238 (1972) 37-38
    [28]
    Y. Ma, A. Kuc, T. Heine, J. Am. Chem. Soc. 139 (2017) 11694-11697
    [29]
    C. Wang, S. Wei, G. Gao, ACS Appl. Nano Mater. 2 (2019) 4061-4066
    [30]
    X.Y. Wang, H.J. Wang, B. Xiang, L.W. Fu, H. Zhu, D. Chai, B. Zhu, Y. Yu, N. Gao, Z.Y. Huang, F.Q. Zu, ACS Appl. Mater. Inter. 10 (2018) 23277-23284
    [31]
    C. Sah, R.N. Noyce, W. Shockley, Proc. IRE 45 (1957) 1228-1243
    [32]
    W.J. Sun, H.Q. Ji, L.X. Li, H.Y. Zhang, Z.K. Wang, J.H. He, J.M. Lu, Angew. Chem. Int. Ed. Engl. 60 (2021) 22933-22939
    [33]
    N. Chen, Z. Xue, H. Yang, Z. Zhang, J. Gao, Y. Li, H. Liu, Phys. Chem. Chem. Phys. 17 (2015) 1785-1789
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (185) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return