Turn off MathJax
Article Contents
Ting-Hao Xu, Sin Liou, Fan-Lin Hou, Yuan-Yao Li. Potassium-doped hydrated manganese dioxide nanowires-carbon nanotube on graphene for high performance rechargeable zinc-ion battery. Green Energy&Environment. doi: 10.1016/j.gee.2021.10.006
Citation: Ting-Hao Xu, Sin Liou, Fan-Lin Hou, Yuan-Yao Li. Potassium-doped hydrated manganese dioxide nanowires-carbon nanotube on graphene for high performance rechargeable zinc-ion battery. Green Energy&Environment. doi: 10.1016/j.gee.2021.10.006

Potassium-doped hydrated manganese dioxide nanowires-carbon nanotube on graphene for high performance rechargeable zinc-ion battery

doi: 10.1016/j.gee.2021.10.006
  • Aqueous rechargeable Zn-ion battery (ARZIB) is a great candidate for the next generation battery due to its high safety, low cost, and relatively high capacity. Here, we develop hydrated and potassium-doped manganese dioxide (MO) nanowires mixed with carbon nanotubes (CNT) on graphene substrates (hydrated KMO-CNT/graphene) for ARZIB. A simple polyol process (poly(ethyl glycol), KMnO4, CNTs, and graphene) is conducted to form the hydrated KMO-CNT/graphene. MnO2 nanowires with diameters of 15–25 nm have a high specific capacity with a short diffusion path. The intercalated K ions and hydrates in the layered MnO2 nanowires remain the MO structure during the charge and discharge process, while carbon nanomaterials (CNTs and graphene) enhance the conductivity of the materials. As a result, the hydrated KMOCNT/graphene demonstrates a good ARZIB performance. A high capacity of 359.8 mAh g-1 at 0.1 A g-1 can be achieved while, at a high current density of 3.0 A g-1, the capacity of 129 mAh g-1 can be obtained with 77% retention after 1000 cycles.

     

  • loading
  • [1]
    F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, R. Schmuch, Nat. Energy 6(2021) 123–134.
    [2]
    A.-H. Liang, T.-H. Xu, S. Liou, Y.-Y. Li, Energy Fuel. (2021).
    [3]
    C.-Y. Chen, A.-H. Liang, C.-L. Huang, T.-H. Hsu, Y.-Y. Li, J. Alloys Compd. 844(2020) 156025.
    [4]
    G. Zhu, X. Tian, H.-C. Tai, Y.-Y. Li, J. Li, H. Sun, P. Liang, M. Angell, C.-L. Huang, C.-S. Ku, Nature 596(2021) 525–530.
    [5]
    C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51(2012) 933–935.
    [6]
    M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Func. Mater. 28(2018) 1802564.
    [7]
    W. Xu, Y. Wang, Nano-Micro Lett. 11(2019) 90.
    [8]
    D. Chen, M. Lu, D. Cai, H. Yang, W. Han, J. Energy Chem. 54(2021) 712–726.
    [9]
    B. Yong, D. Ma, Y. Wang, H. Mi, C. He, P. Zhang, Adv. Energy Mater. 10(2020) 2002354.
    [10]
    S. Liu, L. Kang, J.M. Kim, Y.T. Chun, J. Zhang, S.C. Jun, Adv. Energy Mater. 10(2020) 2000477.
    [11]
    G. Zampardi, F. La Mantia, Curr. Opin. Electrochem. 21(2020) 84–92.
    [12]
    X. Zhang, J. Li, H. Ao, D. Liu, L. Shi, C. Wang, Y. Zhu, Y. Qian, Energy Stor. Mater. 30(2020) 337–345.
    [13]
    X. Wang, L. Ye, Y. Zou, L. Zhao, Q. Jiang, Mater. Today Energy 19(2021) 100593.
    [14]
    N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 49(2020) 4203–4219.
    [15]
    S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 112(2008) 4406–4417.
    [16]
    N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Electrochim. Acta 272(2018) 154–160.
    [17]
    Y. Zhang, S. Deng, Y. Li, B. Liu, G. Pan, Q. Liu, X. Wang, X. Xia, J. Tu, Energy Stor. Mater. 29(2020) 52–59.
    [18]
    X. Guo, J. Zhou, C. Bai, X. Li, G. Fang, S. Liang, Mater. Today Energy 16(2020) 100396.
    [19]
    X. Gao, H. Wu, W. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Zou, H. Hou, X. Ji, Small 16(2020) 1905842.
    [20]
    J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Nat. Commun. 9(2018) 1–8.
    [21]
    S. Lian, C. Sun, W. Xu, W. Huo, Y. Luo, K. Zhao, G. Yao, W. Xu, Y. Zhang, Z. Li, K. Yu, H. Zhao, H. Cheng, J. Zhang, L. Mai, Nanomater. Energy 62(2019) 79–84.
    [22]
    Z. Zhang, H. Shang, X. Zhang, C. Liu, S. Li, Z. Wen, S. Ji, J. Sun, ACS Appl. Energy Mater. 4(2021) 5113–5122.
    [23]
    B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Small 14(2018) 1703850.
    [24]
    X. Zhang, S. Wu, S. Deng, W. Wu, Y. Zeng, X. Xia, G. Pan, Y. Tong, X. Lu, Small Method. 3(2019) 1900525.
    [25]
    J. Mondal, S.K. Srivastava, ACS Appl. Nano Mater. 3(2020) 11048–11059.
    [26]
    T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvåg, P. Norby, J. Phys. Chem. C 112(2008) 13134–13140.
    [27]
    N. Palaniyandy, M.A. Kebede, K. Raju, K.I. Ozoemena, L. Le Roux, M.K. Mathe, R. Jayaprakasam, Mater. Chem. Phys. 230(2019) 258–266.
    [28]
    X. Chen, W. Li, Z. Zeng, D. Reed, X. Li, X. Liu, Chem. Eng. J. 405(2021) 126969.
    [29]
    D. Chen, D. Ding, X. Li, G.H. Waller, X. Xiong, M.A. El-Sayed, M. Liu, Chem. Mater. 27(2015) 6608–6619.
    [30]
    M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Cheng, X. Zheng, CrystEngComm 15(2013) 7010–7018.
    [31]
    Y. Li, Z. Xu, D. Wang, J. Zhao, H. Zhang, Electrochim. Acta 251(2017) 344–354.
    [32]
    G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, S. Liang, Adv. Funct. Mater. 29(2019) 1808375.
    [33]
    J. Wang, J.-G. Wang, X. Qin, Y. Wang, Z. You, H. Liu, M. Shao, ACS Appl. Mater. Interfaces 12(2020) 34949–34958.
    [34]
    Y. Wu, J. Fee, Z. Tobin, A. Shirazi-Amin, P. Kerns, S. Dissanayake, A. Mirich, S.L. Suib, ACS Appl. Energy Mater. 3(2020) 1627–1633.
    [35]
    N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Nat. Commun. 8(2017) 1–9.
    [36]
    K.W. Nam, H. Kim, J.H. Choi, J.W. Choi, Energy Environ. Sci. 12(2019) 1999–2009.
    [37]
    Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang, Y. Hu, D. Wang, L. Zuin, T. Zhou, Y. Wu, Adv. Energy Mater. 8(2018) 1801445.
    [38]
    V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, Nat. Mater. 12(2013) 518–522.
    [39]
    Y. Jin, L. Zou, L. Liu, M.H. Engelhard, R.L. Patel, Z. Nie, K.S. Han, Y. Shao, C. Wang, J. Zhu, Adv. Mater. 31(2019) 1900567.
    [40]
    T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, J. Am. Chem. Soc. 131(2009) 1802–1809.
    [41]
    P. Simon, Y. Gogotsi, B. Dunn, Science 343(2014) 1210–1211.
    [42]
    C.-Y. Chen, A.-H. Liang, C.-L. Huang, T.-H. Hsu, Y.-Y.J. Li, Compounds 844(2020) 156025.
    [43]
    J. Cao, D. Zhang, X. Zhang, S. Wang, J. Han, Y. Zhao, Y. Huang, J. Qin, Appl. Surf. Sci. 534(2020) 147630.
    [44]
    T. Xiong, Y. Zhang, W.S.V. Lee, J. Xue, Adv. Energy Mater. 10(2020) 2001769.
    [45]
    H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy 1(2016) 1–7.
    [46]
    Q.-N. Zhu, Z.-Y. Wang, J.-W. Wang, X.-Y. Liu, D. Yang, L.-W. Cheng, M.-Y. Tang, Y. Qin, H. Wang, Rare Met. (2020) 1–20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return