Citation: | Xiaoqiang Du, Yangyang Ding, Xiaoshuang Zhang. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy&Environment, 2023, 8(3): 798-811. doi: 10.1016/j.gee.2021.09.007 |
[1] |
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future;Nature, 2012;488: 294-303.
|
[2] |
A. Vilenkin, The vacuum energy crisis;Science, 2006;312: 1148-1149.
|
[3] |
F. Podjaski, D. Weber, S. Zhang, L. Diehl, R. Eger, V. Duppel, E. Alarcon-Llado, G. Richter, F. Haase, A. Fontcuberta i Morral, C. Scheu, B.V. Lotsch, Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media;Nat. Catal., 2020;3: 55-63.
|
[4] |
X. Du, G. Ma, X. Zhang, Experimental and Theoretical Understanding on Electrochemical Activation Processes of Nickel Selenide for Excellent Water-Splitting Performance: Comparing the Electrochemical Performances with M-NiSe (M = Co, Cu, and V);ACS Sustainable Chem. Eng., 2019;7: 19257-19267.
|
[5] |
X. Du, H. Su, X. Zhang, Metal-Organic Framework-Derived Cu-Doped Co9S8 Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting;ACS Sustainable Chem. Eng., 2019;7: 16917-16926.
|
[6] |
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction;Energy Environ. Sci., 2014;7: 2624-2629.
|
[7] |
Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction;Chem. Soc. Rev., 2016;45: 1529-1541.
|
[8] |
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices;J. Am. Chem. Soc., 2015;137: 4347-4357.
|
[9] |
B. Liu, Y.-F. Zhao, H.-Q. Peng, Z.-Y. Zhang, C.-K. Sit, M.-F. Yuen, T.-R. Zhang, C.-S. Lee, W.-J. Zhang, Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution;Adv. Mater., 2017;29: 1606521.
|
[10] |
J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Graetzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts;Science, 2014;345: 1593-1596.
|
[11] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design;Science, 2017;355: 4998.
|
[12] |
F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M.B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J.F. de Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B. Roldan Cuenya, P. Strasser, In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution;Nat. Commun., 2020;11: 2522.
|
[13] |
Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction;Adv. Funct. Mater., 2018;28: 1703363.
|
[14] |
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions;Chem. Soc. Rev., 2015;44: 2060-2086.
|
[15] |
Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, Electronic Structure Tuning in Ni3FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting;ACS Nano, 2018;12: 245-253.
|
[16] |
W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S.-T. Lee, H. Dai, Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene;Nat. Communi., 2015;6: 10035.
|
[17] |
Y. Wang, Y. Yu, R. Jia, C. Zhang, B. Zhang, Electrochemical synthesis of nitric acid from air and ammonia through waste utilization;Nat. Sci. Rev., 2019;6: 730-738.
|
[18] |
B. You, X. Liu, N. Jiang, Y. Sun, A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization;J. Am. Chem. Soc., 2016;138: 13639-13646.
|
[19] |
J. Na, B. Seo, J. Kim, C.W. Lee, H. Lee, Y.J. Hwang, B.K. Min, D.K. Lee, H.-S. Oh, U. Lee, General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation;Nat. Commun., 2019;10: 5193.
|
[20] |
W. Chen, C. Xie, Y. Wang, Y. Zou, C.-L. Dong, Y.-C. Huang, Z. Xiao, Z. Wei, S. Du, C. Chen, B. Zhou, J. Ma, S. Wang, Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation;Chem, 2020;6: 2974-2993.
|
[21] |
L. Zhang, L. Wang, H. Lin, Y. Liu, J. Ye, Y. Wen, A. Chen, L. Wang, F. Ni, Z. Zhou, S. Sun, Y. Li, B. Zhang, H. Peng, A Lattice-Oxygen-Involved Reaction Pathway to Boost Urea Oxidation;Angew. Chem. Int. Ed., 2019;58: 16820-16825.
|
[22] |
T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, L. Chen, X. Sun, Enhanced Electrocatalysis for Energy-Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter;Adv. Energy Mater., 2017;7: 1700020.
|
[23] |
Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan, S.-H. Yu, Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis;Energy Environ Sci., 2018;11: 1890-1897.
|
[24] |
H. Sun, W. Zhang, J.-G. Li, Z. Li, X. Ao, K.-H. Xue, K.K. Ostrikov, J. Tang, C. Wang, Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis;Appl. Catal. B: Environ., 2021;284: 119740.
|
[25] |
B. Zhu, Z. Liang, R. Zou, Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction;Small, 2020;16: 1906133.
|
[26] |
X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu, X.C. Zeng, C. Wu, Y. Xie, Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells;Angew. Chem. Int. Ed., 2016;55: 12465-12469.
|
[27] |
J. Yin, J. Jin, H. Lin, Z. Yin, J. Li, M. Lu, L. Guo, P. Xi, Y. Tang, C.-H. Yan, Optimized Metal Chalcogenides for Boosting Water Splitting;Adv. Sci., 2020;7: 1903070.
|
[28] |
L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting;Chem. Soc. Rev., 2020;49: 3072-3106.
|
[29] |
S. Peng, F. Gong, L. Li, D. Yu, D. Ji, T. Zhang, Z. Hu, Z. Zhang, S. Chou, Y. Du, S. Ramakrishna, Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis;J. Am. Chem. Soc., 2018;140: 13644-13653.
|
[30] |
Y. Duan, S. Sun, Y. Sun, S. Xi, X. Chi, Q. Zhang, X. Ren, J. Wang, S.J.H. Ong, Y. Du, L. Gu, A. Grimaud, Z.J. Xu, Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation;Adv. Mater., 2019;31: 1807898.
|
[31] |
L. Hu, X. Zeng, X. Wei, H. Wang, Y. Wu, W. Gu, L. Shi, C. Zhu, Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures;Appl. Catal. B: Environ., 2020;273: 119014.
|
[32] |
C. Wu, H. Li, Z. Xia, X. Zhang, R. Deng, S. Wang, G. Sun, NiFe Layered Double Hydroxides with Unsaturated Metal Sites via Precovered Surface Strategy for Oxygen Evolution Reaction;Acs Catal., 2020;10: 11127-11135.
|
[33] |
S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S.G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution;Angew. Chem. Int. Ed., 2014;53: 12594-12599.
|
[34] |
J.-X. Feng, J.-Q. Wu, Y.-X. Tong, G.-R. Li, Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption;J. Am. Chem. Soc., 2018;140: 610-617.
|
[35] |
G. Li, Q. Yang, J. Rao, C. Fu, S.-C. Liou, G. Auffermann, Y. Sun, C. Felser, In Situ Induction of Strain in Iron Phosphide (FeP2) Catalyst for Enhanced Hydroxide Adsorption and Water Oxidation;Adv. Funct. Mater., 2020;30: 1907791.
|
[36] |
L. Ji, J. Wang, X. Teng, T.J. Meyer, Z. Chen, CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting;Acs Catal., 2020;10: 412-419.
|
[37] |
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting;Angew. Chem. Int. Ed., 2015;54: 9351-9355.
|
[38] |
X. Zheng, X. Han, Y. Cao, Y. Zhang, D. Nordlund, J. Wang, S. Chou, H. Liu, L. Li, C. Zhong, Y. Deng, W. Hu, Identifying Dense NiSe2/CoSe2 Heterointerfaces Coupled with Surface High-Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis;Adv. Mater., 2020;32: 2000607.
|
[39] |
J. Guan, C. Li, J. Zhao, Y. Yang, W. Zhou, Y. Wang, G.-R. Li, FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting;Appl. Catal. B: Environ., 2020;269: 118600.
|
[40] |
H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Boosting Activity on Co4N Porous Nanosheet by Coupling CeO(2)for Efficient Electrochemical Overall Water Splitting at High Current Densities;Adv. Funct. Mater., 2020;30: 1910596.
|
[41] |
L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting;J. Am. Chem. Soc., 2015;137: 14023-14026.
|
[42] |
H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core-Shell System Toward Synergetic Electrocatalytic Water Splitting;Adv. Mater., 2015;27: 4752-4759.
|
[43] |
F. Du, L. Shi, Y. Zhang, T. Li, J. Wang, G. Wen, A. Alsaedi, T. Hayat, Y. Zhou, Z. Zou, Foam-like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water-splitting;Appl. Catal. B: Environ., 2019;253: 246-252.
|
[44] |
Q. Dong, Y. Zhang, Z. Dai, P. Wang, M. Zhao, J. Shao, W. Huang, X. Dong, Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction;Nano Res., 2018;11: 1389-1398.
|
[45] |
Y. Yang, K. Zhang, H. Ling, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting;Acs Catal., 2017;7: 2357-2366.
|
[46] |
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity;Angew. Chem. Int. Ed., 2016;55: 6702-6707.
|
[47] |
Z. Zang, X. Wang, X. Li, Q. Zhao, L. Li, X. Yang, X. Yu, X. Zhang, Z. Lu, Co9S8 Nanosheet Coupled Cu2S Nanorod Heterostructure as Efficient Catalyst for Overall Water Splitting;Acs Appli. Mater. Interfaces, 2021;13: 9865-9874.
|
[48] |
Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M.G. Kanatzidis, Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range;J. Am. Chem. Soc., 2019;141: 10417-10430.
|
[49] |
F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang, S. Yang, Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting;J. Mater. Chem. A, 2020;8: 3083-3096.
|
[50] |
O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal-organic framework;Nature, 1995;378: 703-706.
|
[51] |
Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai, H. Zhan, Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density;Nanoscale, 2018;10: 14171-14181.
|
[52] |
H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions;Chem. Soc. Rev., 2020;49: 1414-1448.
|
[53] |
H. Xu, J. Cao, C. Shan, B. Wang, P. Xi, W. Liu, Y. Tang, MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis;Angew. Chem. Int. Ed., 2018;57: 8654-8658.
|
[54] |
Y.-J. Tang, H. Zheng, Y. Wang, W. Zhang, K. Zhou, Laser-Induced Annealing of Metal-Organic Frameworks on Conductive Substrates for Electrochemical Water Splitting;Adv. Funct. Mater., 2021: 2102648.
|
[55] |
F. Li, J. Chen, D. Zhang, W.-F. Fu, Y. Chen, Z. Wen, X.-J. Lv, Heteroporous MoS2/Ni3S2 towards superior electrocatalytic overall urea splitting;Chem. Commun., 2018;54: 5181-5184.
|
[56] |
A. Muthurasu, V. Maruthapandian, H.Y. Kim, Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction;Appl. Catal. B: Environ., 2019;248: 202-210.
|
[57] |
M. Kim, M.A.R. Anjum, M. Choi, H.Y. Jeong, S.H. Choi, N. Park, J.S. Lee, Covalent 0D-2D Heterostructuring of Co9S8-MoS(2)for Enhanced Hydrogen Evolution in All pH Electrolytes;Adv. Funct. Mater., 2020;30: 2002536.
|
[58] |
W. He, H. Liu, J. Cheng, J. Mao, C. Chen, Q. Hao, J. Zhao, C. Liu, Y. Li, L. Liang, Designing Zn-doped nickel sulfide catalysts with an optimized electronic structure for enhanced hydrogen evolution reaction;Nanoscale, 2021;13: 10127-10132.
|
[59] |
Q. Liu, L. Xie, Z. Liu, G. Du, A.M. Asiri, X. Sun, A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution;Chem. Commun., 2017;53: 12446-12449.
|
[60] |
X. Du, H. Su, X. Zhang, Metal-organic framework-derived M (M = Fe, Ni, Zn and Mo) doped Co9S8 nanoarrays as efficient electrocatalyst for water splitting: The combination of theoretical calculation and experiment;J. Catal., 2020;383: 103-116.
|
[61] |
Y. Li, R. Cao, L. Li, X. Tang, T. Chu, B. Huang, K. Yuan, Y. Chen, Simultaneously Integrating Single Atomic Cobalt Sites and Co9S8 Nanoparticles into Hollow Carbon Nanotubes as Trifunctional Electrocatalysts for Zn-Air Batteries to Drive Water Splitting;Small, 2020;16: 1906735.
|
[62] |
G. Zhang, Y.-S. Feng, W.-T. Lu, D. He, C.-Y. Wang, Y.-K. Li, X.-Y. Wang, F.-F. Cao, Enhanced Catalysis of Electrochemical Overall Water Splitting in Alkaline Media by Fe Doping in Ni3S2 Nanosheet Arrays;ACS Catal., 2018;8: 5431-5441.
|
[63] |
X. Du, Z. Yang, Y. Li, Y. Gong, M. Zhao, Controlled synthesis of Ni(OH)(2)/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting;J. Mater. Chem. A, 2018;6: 6938-6946.
|
[64] |
T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion;Sci. Rep., 2015;5: 13801.
|
[65] |
X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities;Nat. Commun., 2015;6: 6616.
|