Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Xiaoqiang Du, Yangyang Ding, Xiaoshuang Zhang. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy&Environment, 2023, 8(3): 798-811. doi: 10.1016/j.gee.2021.09.007
Citation: Xiaoqiang Du, Yangyang Ding, Xiaoshuang Zhang. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy&Environment, 2023, 8(3): 798-811. doi: 10.1016/j.gee.2021.09.007

MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis

doi: 10.1016/j.gee.2021.09.007
  • Water electrolysis is a promising technology to produce hydrogen but it was severely restricted by the slow oxygen evolution reaction (OER). Herein, we firstly reported an advanced electrocatalyst of MOF-derived hollow Zn-Co-Ni sulfides (ZnS@Co9S8@Ni3S2-1/2, abbreviated as ZCNS-1/2) nanosword arrays (NSAs) with remarkable hydrogen evolution reaction (HER), OER and corresponding water electrolysis performance. To reach a current density of 10 mA cm-2, the cell voltage of assembled ZCNS-1/2//ZCNS-1/2 for urea electrolysis (1.314 V) is 208 mV lower than that for water electrolysis (1.522 V) and stably catalyzed for over 15 h, substantially outperforming the most reported water and urea electrolysis electrocatalysts. Density functional theory calculations and experimental result clearly reveal that the properties of large electrochemical active surface area (ECSA) caused by hollow NSAs and fast charge transfer resulted from the Co9S8@Ni3S2 heterostructure endow the ZCNS-1/2 electrode with an enhanced electrocatalytic performance.

     

  • loading
  • [1]
    S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future;Nature, 2012;488: 294-303.
    [2]
    A. Vilenkin, The vacuum energy crisis;Science, 2006;312: 1148-1149.
    [3]
    F. Podjaski, D. Weber, S. Zhang, L. Diehl, R. Eger, V. Duppel, E. Alarcon-Llado, G. Richter, F. Haase, A. Fontcuberta i Morral, C. Scheu, B.V. Lotsch, Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media;Nat. Catal., 2020;3: 55-63.
    [4]
    X. Du, G. Ma, X. Zhang, Experimental and Theoretical Understanding on Electrochemical Activation Processes of Nickel Selenide for Excellent Water-Splitting Performance: Comparing the Electrochemical Performances with M-NiSe (M = Co, Cu, and V);ACS Sustainable Chem. Eng., 2019;7: 19257-19267.
    [5]
    X. Du, H. Su, X. Zhang, Metal-Organic Framework-Derived Cu-Doped Co9S8 Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting;ACS Sustainable Chem. Eng., 2019;7: 16917-16926.
    [6]
    P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction;Energy Environ. Sci., 2014;7: 2624-2629.
    [7]
    Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction;Chem. Soc. Rev., 2016;45: 1529-1541.
    [8]
    C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices;J. Am. Chem. Soc., 2015;137: 4347-4357.
    [9]
    B. Liu, Y.-F. Zhao, H.-Q. Peng, Z.-Y. Zhang, C.-K. Sit, M.-F. Yuen, T.-R. Zhang, C.-S. Lee, W.-J. Zhang, Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution;Adv. Mater., 2017;29: 1606521.
    [10]
    J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Graetzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts;Science, 2014;345: 1593-1596.
    [11]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design;Science, 2017;355: 4998.
    [12]
    F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M.B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J.F. de Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B. Roldan Cuenya, P. Strasser, In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution;Nat. Commun., 2020;11: 2522.
    [13]
    Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction;Adv. Funct. Mater., 2018;28: 1703363.
    [14]
    Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions;Chem. Soc. Rev., 2015;44: 2060-2086.
    [15]
    Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, Electronic Structure Tuning in Ni3FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting;ACS Nano, 2018;12: 245-253.
    [16]
    W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S.-T. Lee, H. Dai, Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene;Nat. Communi., 2015;6: 10035.
    [17]
    Y. Wang, Y. Yu, R. Jia, C. Zhang, B. Zhang, Electrochemical synthesis of nitric acid from air and ammonia through waste utilization;Nat. Sci. Rev., 2019;6: 730-738.
    [18]
    B. You, X. Liu, N. Jiang, Y. Sun, A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization;J. Am. Chem. Soc., 2016;138: 13639-13646.
    [19]
    J. Na, B. Seo, J. Kim, C.W. Lee, H. Lee, Y.J. Hwang, B.K. Min, D.K. Lee, H.-S. Oh, U. Lee, General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation;Nat. Commun., 2019;10: 5193.
    [20]
    W. Chen, C. Xie, Y. Wang, Y. Zou, C.-L. Dong, Y.-C. Huang, Z. Xiao, Z. Wei, S. Du, C. Chen, B. Zhou, J. Ma, S. Wang, Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation;Chem, 2020;6: 2974-2993.
    [21]
    L. Zhang, L. Wang, H. Lin, Y. Liu, J. Ye, Y. Wen, A. Chen, L. Wang, F. Ni, Z. Zhou, S. Sun, Y. Li, B. Zhang, H. Peng, A Lattice-Oxygen-Involved Reaction Pathway to Boost Urea Oxidation;Angew. Chem. Int. Ed., 2019;58: 16820-16825.
    [22]
    T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, L. Chen, X. Sun, Enhanced Electrocatalysis for Energy-Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter;Adv. Energy Mater., 2017;7: 1700020.
    [23]
    Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan, S.-H. Yu, Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis;Energy Environ Sci., 2018;11: 1890-1897.
    [24]
    H. Sun, W. Zhang, J.-G. Li, Z. Li, X. Ao, K.-H. Xue, K.K. Ostrikov, J. Tang, C. Wang, Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis;Appl. Catal. B: Environ., 2021;284: 119740.
    [25]
    B. Zhu, Z. Liang, R. Zou, Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction;Small, 2020;16: 1906133.
    [26]
    X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu, X.C. Zeng, C. Wu, Y. Xie, Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells;Angew. Chem. Int. Ed., 2016;55: 12465-12469.
    [27]
    J. Yin, J. Jin, H. Lin, Z. Yin, J. Li, M. Lu, L. Guo, P. Xi, Y. Tang, C.-H. Yan, Optimized Metal Chalcogenides for Boosting Water Splitting;Adv. Sci., 2020;7: 1903070.
    [28]
    L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting;Chem. Soc. Rev., 2020;49: 3072-3106.
    [29]
    S. Peng, F. Gong, L. Li, D. Yu, D. Ji, T. Zhang, Z. Hu, Z. Zhang, S. Chou, Y. Du, S. Ramakrishna, Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis;J. Am. Chem. Soc., 2018;140: 13644-13653.
    [30]
    Y. Duan, S. Sun, Y. Sun, S. Xi, X. Chi, Q. Zhang, X. Ren, J. Wang, S.J.H. Ong, Y. Du, L. Gu, A. Grimaud, Z.J. Xu, Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation;Adv. Mater., 2019;31: 1807898.
    [31]
    L. Hu, X. Zeng, X. Wei, H. Wang, Y. Wu, W. Gu, L. Shi, C. Zhu, Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures;Appl. Catal. B: Environ., 2020;273: 119014.
    [32]
    C. Wu, H. Li, Z. Xia, X. Zhang, R. Deng, S. Wang, G. Sun, NiFe Layered Double Hydroxides with Unsaturated Metal Sites via Precovered Surface Strategy for Oxygen Evolution Reaction;Acs Catal., 2020;10: 11127-11135.
    [33]
    S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S.G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution;Angew. Chem. Int. Ed., 2014;53: 12594-12599.
    [34]
    J.-X. Feng, J.-Q. Wu, Y.-X. Tong, G.-R. Li, Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption;J. Am. Chem. Soc., 2018;140: 610-617.
    [35]
    G. Li, Q. Yang, J. Rao, C. Fu, S.-C. Liou, G. Auffermann, Y. Sun, C. Felser, In Situ Induction of Strain in Iron Phosphide (FeP2) Catalyst for Enhanced Hydroxide Adsorption and Water Oxidation;Adv. Funct. Mater., 2020;30: 1907791.
    [36]
    L. Ji, J. Wang, X. Teng, T.J. Meyer, Z. Chen, CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting;Acs Catal., 2020;10: 412-419.
    [37]
    C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting;Angew. Chem. Int. Ed., 2015;54: 9351-9355.
    [38]
    X. Zheng, X. Han, Y. Cao, Y. Zhang, D. Nordlund, J. Wang, S. Chou, H. Liu, L. Li, C. Zhong, Y. Deng, W. Hu, Identifying Dense NiSe2/CoSe2 Heterointerfaces Coupled with Surface High-Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis;Adv. Mater., 2020;32: 2000607.
    [39]
    J. Guan, C. Li, J. Zhao, Y. Yang, W. Zhou, Y. Wang, G.-R. Li, FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting;Appl. Catal. B: Environ., 2020;269: 118600.
    [40]
    H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Boosting Activity on Co4N Porous Nanosheet by Coupling CeO(2)for Efficient Electrochemical Overall Water Splitting at High Current Densities;Adv. Funct. Mater., 2020;30: 1910596.
    [41]
    L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting;J. Am. Chem. Soc., 2015;137: 14023-14026.
    [42]
    H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core-Shell System Toward Synergetic Electrocatalytic Water Splitting;Adv. Mater., 2015;27: 4752-4759.
    [43]
    F. Du, L. Shi, Y. Zhang, T. Li, J. Wang, G. Wen, A. Alsaedi, T. Hayat, Y. Zhou, Z. Zou, Foam-like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water-splitting;Appl. Catal. B: Environ., 2019;253: 246-252.
    [44]
    Q. Dong, Y. Zhang, Z. Dai, P. Wang, M. Zhao, J. Shao, W. Huang, X. Dong, Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction;Nano Res., 2018;11: 1389-1398.
    [45]
    Y. Yang, K. Zhang, H. Ling, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting;Acs Catal., 2017;7: 2357-2366.
    [46]
    J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity;Angew. Chem. Int. Ed., 2016;55: 6702-6707.
    [47]
    Z. Zang, X. Wang, X. Li, Q. Zhao, L. Li, X. Yang, X. Yu, X. Zhang, Z. Lu, Co9S8 Nanosheet Coupled Cu2S Nanorod Heterostructure as Efficient Catalyst for Overall Water Splitting;Acs Appli. Mater. Interfaces, 2021;13: 9865-9874.
    [48]
    Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M.G. Kanatzidis, Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range;J. Am. Chem. Soc., 2019;141: 10417-10430.
    [49]
    F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang, S. Yang, Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting;J. Mater. Chem. A, 2020;8: 3083-3096.
    [50]
    O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal-organic framework;Nature, 1995;378: 703-706.
    [51]
    Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai, H. Zhan, Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density;Nanoscale, 2018;10: 14171-14181.
    [52]
    H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions;Chem. Soc. Rev., 2020;49: 1414-1448.
    [53]
    H. Xu, J. Cao, C. Shan, B. Wang, P. Xi, W. Liu, Y. Tang, MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis;Angew. Chem. Int. Ed., 2018;57: 8654-8658.
    [54]
    Y.-J. Tang, H. Zheng, Y. Wang, W. Zhang, K. Zhou, Laser-Induced Annealing of Metal-Organic Frameworks on Conductive Substrates for Electrochemical Water Splitting;Adv. Funct. Mater., 2021: 2102648.
    [55]
    F. Li, J. Chen, D. Zhang, W.-F. Fu, Y. Chen, Z. Wen, X.-J. Lv, Heteroporous MoS2/Ni3S2 towards superior electrocatalytic overall urea splitting;Chem. Commun., 2018;54: 5181-5184.
    [56]
    A. Muthurasu, V. Maruthapandian, H.Y. Kim, Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction;Appl. Catal. B: Environ., 2019;248: 202-210.
    [57]
    M. Kim, M.A.R. Anjum, M. Choi, H.Y. Jeong, S.H. Choi, N. Park, J.S. Lee, Covalent 0D-2D Heterostructuring of Co9S8-MoS(2)for Enhanced Hydrogen Evolution in All pH Electrolytes;Adv. Funct. Mater., 2020;30: 2002536.
    [58]
    W. He, H. Liu, J. Cheng, J. Mao, C. Chen, Q. Hao, J. Zhao, C. Liu, Y. Li, L. Liang, Designing Zn-doped nickel sulfide catalysts with an optimized electronic structure for enhanced hydrogen evolution reaction;Nanoscale, 2021;13: 10127-10132.
    [59]
    Q. Liu, L. Xie, Z. Liu, G. Du, A.M. Asiri, X. Sun, A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution;Chem. Commun., 2017;53: 12446-12449.
    [60]
    X. Du, H. Su, X. Zhang, Metal-organic framework-derived M (M = Fe, Ni, Zn and Mo) doped Co9S8 nanoarrays as efficient electrocatalyst for water splitting: The combination of theoretical calculation and experiment;J. Catal., 2020;383: 103-116.
    [61]
    Y. Li, R. Cao, L. Li, X. Tang, T. Chu, B. Huang, K. Yuan, Y. Chen, Simultaneously Integrating Single Atomic Cobalt Sites and Co9S8 Nanoparticles into Hollow Carbon Nanotubes as Trifunctional Electrocatalysts for Zn-Air Batteries to Drive Water Splitting;Small, 2020;16: 1906735.
    [62]
    G. Zhang, Y.-S. Feng, W.-T. Lu, D. He, C.-Y. Wang, Y.-K. Li, X.-Y. Wang, F.-F. Cao, Enhanced Catalysis of Electrochemical Overall Water Splitting in Alkaline Media by Fe Doping in Ni3S2 Nanosheet Arrays;ACS Catal., 2018;8: 5431-5441.
    [63]
    X. Du, Z. Yang, Y. Li, Y. Gong, M. Zhao, Controlled synthesis of Ni(OH)(2)/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting;J. Mater. Chem. A, 2018;6: 6938-6946.
    [64]
    T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion;Sci. Rep., 2015;5: 13801.
    [65]
    X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities;Nat. Commun., 2015;6: 6616.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (232) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return