Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Yanze Wu, Yalan Liu, Kui Liu, Lin Wang, Lei Zhang, Degao Wang, Zhifang Chai, Weiqun Shi. Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media. Green Energy&Environment, 2022, 7(4): 799-806. doi: 10.1016/j.gee.2021.09.005
Citation: Yanze Wu, Yalan Liu, Kui Liu, Lin Wang, Lei Zhang, Degao Wang, Zhifang Chai, Weiqun Shi. Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media. Green Energy&Environment, 2022, 7(4): 799-806. doi: 10.1016/j.gee.2021.09.005

Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media

doi: 10.1016/j.gee.2021.09.005
  • Ni-based metallic foams possessing large specific surfaces and open cell structures are of specific interest as catalysts or catalyst carriers for electrolysis of water. Traditional fabrication of Nickel foam limits the element modification choices to several inert transition metals only on polymer foam precursor and subsequent preparation of foam-based catalysts in aqueous solution or organic electrolyte. To expand the modification horizon, molten salt with wide electrochemical window and fast ion diffusion can achieve the reduction of highly active elements. Herein, we reported is a general and facile method to deposit directly of highly reactive element La and prepare hierarchical honeycomb LaNi5 alloy on Ni foam (ho-LaNi5/NF). This self-supporting electrode presents excellent electrical coupling and conductivity between the Ni foam and LaNi5, which provides a 3D self-supported heterostructure with outstanding electrocatalytic activity and excellent durability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). It exhibits excellent overpotential (1.86 V) comparable to commercial coupled IrO2//Pt/C (1.85 V) at a high current density of 100 mA cm-2. This work may pave the way for fabricating novel 3D self-supported honeycomb alloy that can be applied as electrode for usage of clean energy.

     

  • loading
  • [1]
    W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 8 (2015) 1404-1427
    [2]
    W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Angew. Chem. Int. Ed. 59 (2020) 136-152
    [3]
    W. Song, X. Fan, B. G. Xu, F. Yan, H. Q. Cui, Q. Wei, R. X. Peng, L. Hong, J. M. Huang, Z. Y. Ge, Adv. Mater. 30 (2018) 1800075
    [4]
    A. Schoedel, Z. Ji, O. M. Yaghi, Nat. Energy 1 (2016) 16034
    [5]
    Q. Yi, W. Li, J. Feng, K. Xie, Chem. Soc. Rev. 44 (2015) 5409-5445
    [6]
    O. V. Marchenko, S. V. Solomin, Int. J. Hydrogen Energy 40 (2015) 3801-3805
    [7]
    I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 1 (2017) 0003
    [8]
    G. Q. Zhao, K. Rui, S. X. Dou, W. P. Sun, Adv. Funct. Mater. 28 (2018) 1803291
    [9]
    P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5 (2015) 1500985
    [10]
    Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 140 (2018) 9046-9050
    [11]
    C. Wei, Y. Sun, G. G. Scherer, A. C. Fisher, M. Sherburne, J. W. Ager, Z. J. Xu, J. Am. Chem. Soc. 142 (2020) 7765-7775
    [12]
    Z. J. Liu, J. Qi, M. X. Liu, S. M. Zhang, Q. K. Fan, H. P. Liu, K. Liu, H. Q. Zheng, Y. D. Yin, C. B. Gao, Angew. Chem. Int. Ed. 57 (2018) 11678-11682
    [13]
    M. Y. Gao, C. Yang, Q. B. Zhang, J. R. Zeng, X. T. Li, Y. X. Hua, C. Y. Xu, Y. Li, J. Electrochem. Soc. 164 (2017) 778-784
    [14]
    G. Chen, Z. W. Hu, Y. P. Zhu, B. B. Gu, Y. J. Zhong, H. J. Lin, C. T. Chen, W. Zhou, Z. P. Shao, Adv. Mater. 30 (2018) 1804333
    [15]
    R. Xu, R. Wu, Y. M. Shi, J. F. Zhang, B. Zhang, Nano Energy 24 (2016) 103-110
    [16]
    B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Chem. Mat. 28 (2016) 6934-6941
    [17]
    J. X. Feng, H. Xu, Y. T. Dong, X. F. Lu, Y. X. Tong, G. R. Li, Angew. Chem. Int. Ed. 56 (2017) 2960-2964
    [18]
    J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong, G. R. Li, Angew. Chem. Int. Ed. 55 (2016) 3694-3698
    [19]
    X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, Adv. Mater. 29 (2017) 1604437
    [20]
    B. Q. Li, C. Tang, H. F. Wang, X. L. Zhu, Q. Zhang, Sci. Adv. 2 (2016) e1600495
    [21]
    P. W. Menezes, A. Indra, C. Das, C. Walter, C. Gobel, V. Gutkin, D. Schmeiβer, M. Driess, ACS Catal. 7 (2017) 103-109
    [22]
    Y. L. Liu, L. Y. Yuan, G. A. Ye, L. Kui, L. Zhu, M. L. Zhang, Z. F. Chai, W. Q. Shi, Electrochim. Acta 147 (2014) 104-113
    [23]
    Y. L. Liu, G. A. Ye, L. Y. Yuan, K. Liu, Y. X. Feng, Z. J. Li, Z. F. Chai, W. Q. Shi, Electrochim. Acta 158 (2015) 277-286
    [24]
    Y. L. Liu, K. Liu, L. X. Luo, L. Y. Yuan, Z. F. Chai, W. Q. Shi, Electrochim. Acta 275 (2018) 100-109
    [25]
    H. Nakajima, Prog. Mater. Sci. 52 (2007) 1091-1173
    [26]
    A. M. Hodge, D. C. Dunand, Intermetallics 9 (2001) 581-589
    [27]
    H. Konishi, Y. Yoshihara, H. Ono, T. Usui, T. Oishi, T. Nohira, J. Japan. Soc. Exper. Mechan. 10 (2010) s215-s220
    [28]
    L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A. M. Asiri, X. Sun, Small Struct. 2 (2021) 2000048
    [29]
    C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 56 (2017) 842-846
    [30]
    Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, ACS Catal. 8 (2018) 2236-2241
    [31]
    M. M. Jaksic, Electrochim. Acta 29 (1984) 1539-1550
    [32]
    W. Hume-Rothery, Prog. Mater. Sci. 13 (1968) 229-265
    [33]
    F. Rosalbino, D. Maccio, A. Saccone, E. Angelini, S. Delfino, Int. J. Hydrogen Energy 36 (2011) 1965-1973
    [34]
    W. Gao, D. Wen, J. C. Ho, Y. Qu, Mater. Today Chem. 12 (2019) 266-281
    [35]
    Z. Xiao, C. Wu, L. Wang, J. Xu, Q. Zheng, L. Pan, J. Zou, X. Zhang, G. Li, Appl. Catal. B 286 (2021) 119884
    [36]
    C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 54 (2015) 9351-9355
    [37]
    P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53 (2014) 12855-12859
    [38]
    A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26 (2016) 4661-4672
    [39]
    H. Liang, A. N. Gandi, C. Xia, M. N. Hedhili, D. H. Anjum, U. Schwingenschlogl, H. N. Alshareef, ACS Energy Lett. 2 (2017) 1035-1042
    [40]
    H. Feng, S. Gao, J. Shi, L. Zhang, Z. Peng, S. Cao, Electrochim. Acta 299 (2019) 116-124
    [41]
    J. Liu, Y. Zheng, Y. Jiao, Z. Wang, Z. Lu, A. Vasileff, S. Z. Qiao, Small 14 (2018) 1704073
    [42]
    K. Dastafkan, Q. Meyer, X. Chen, C. Zhao, Small 16 (2020) 2002412
    [43]
    C. Wan, H. Yan, X. Ju, Y. Wang, M. Huang, F. Kong, W. Xiong, Int. J. Hydrogen Energy 37 (2012) 13234-13242
    [44]
    H. C. Siegmann, L. Schlapbach, C. R. Brundle, Phys. Rev. Lett. 40 (1978) 972-975
    [45]
    S. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, A. T. Bell, J. Phys. Chem. C 119 (2015) 7243-7254
    [46]
    C. V. Ramana, R. S. Vemuri, V. V. Kaichev, V. A. Kochubey, A. A. Saraev, V. V. Atuchin, ACS Appl. Mater. Interfaces 3 (2011) 4370-4373
    [47]
    Y. Dedkov, W. Klesse, A. Becker, F. Spaeth, C. Papp, E. Voloshina, Carbon 121 (2017) 10-16
    [48]
    Q. Cai, W. Hong, C. Jian, W. Liu, Nanoscale 12 (2020) 7550-7556
    [49]
    H. Y. Wang, Y. Y. Hsu, R. Chen, T. S. Chan, H. M. Chen, B. Liu, Adv. Energy Mater. 5 (2015) 1500091
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return