Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Wei Yu, Ming Gao, Guanhe Rim, Tony G. Feric, Mark L. Rivers, Ammar Alahmed, Aqil Jamal, Ah-Hyung Alissa Park. Novel in-capsule synthesis of metal-organic framework for innovative carbon dioxide capture system. Green Energy&Environment, 2023, 8(3): 767-774. doi: 10.1016/j.gee.2021.08.002
Citation: Wei Yu, Ming Gao, Guanhe Rim, Tony G. Feric, Mark L. Rivers, Ammar Alahmed, Aqil Jamal, Ah-Hyung Alissa Park. Novel in-capsule synthesis of metal-organic framework for innovative carbon dioxide capture system. Green Energy&Environment, 2023, 8(3): 767-774. doi: 10.1016/j.gee.2021.08.002

Novel in-capsule synthesis of metal-organic framework for innovative carbon dioxide capture system

doi: 10.1016/j.gee.2021.08.002
  • Metal-Organic Frameworks (MOFs) have been developed as solid sorbents for CO2 capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units. A number of MOFs (e.g., HKUST-1) have been developed but the question remains how to deploy them for gas-solid contact. Unfortunately, the direct use of MOFs as nanocrystals would lead to serious problems and risks. Here, for the first time, we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis. Using a custom-made double capillary microfluidic assembly, double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced. Subsequently, HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules. The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles, and further, can selectively reject undesired compounds to protect encapsulated MOFs.

     

  • loading
  • [1]
    D.J. Heldebrant, P.K. Koech, V.-A. Glezakou, R. Rousseau, D. Malhotra, D.C. Cantu, Chem. Rev. 117 (2017) 9594-9624.
    [2]
    E. and M. National Academies of Sciences, Negative Emissions Technologies and Reliable Sequestration, National Academies Press, Washington, D.C., 2018.
    [3]
    E. and M. National Academies of Sciences, Gaseous Carbon Waste Streams Utilization, National Academies Press, Washington, D.C., 2018.
    [4]
    T. Niass, Jordan Kislear, M. Buchanan, J. Svalestuen, A.-H.A. Park, D. DePaolo, J. Powell, Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage | Department of Energy, 2017.
    [5]
    W. Yu, T. Wang, A.H.A. Park, M. Fang, Nanoscale 11 (2019) 17137-17156.
    [6]
    G.T. Rochelle, Science 325 (2009) 1652-1654.
    [7]
    A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 51 (2012) 1438-1463.
    [8]
    Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4 (2011) 42-55.
    [9]
    H. Yu, X. Wang, Z. Shu, M. Fujii, C. Song, Front. Chem. Sci. Eng. 12 (2018) 83-93.
    [10]
    P.M. Bhatt, Y. Belmabkhout, A. Cadiau, K. Adil, O. Shekhah, A. Shkurenko, L.J. Barbour, M. Eddaoudi, J. Am. Chem. Soc. 138 (2016) 9301-9307.
    [11]
    A.C. Forse, P.J. Milner, J.-H. Lee, H.N. Redfearn, J. Oktawiec, R.L. Siegelman, J.D. Martell, B. Dinakar, L.B. Porter-Zasada, M.I. Gonzalez, J.B. Neaton, J.R. Long, J.A. Reimer, J. Am. Chem. Soc. 140 (2018) 18016-18031.
    [12]
    A. Gladysiak, K.S. Deeg, I. Dovgaliuk, A. Chidambaram, K. Ordiz, P.G. Boyd, S.M. Moosavi, D. Ongari, J.A.R. Navarro, B. Smit, K.C. Stylianou, ACS Appl. Mater. Interfaces 10 (2018) 36144-36156.
    [13]
    F. Schuth, W. Schmidt, Adv. Mater. 14 (2002) 629-638.
    [14]
    G. Maurin, C. Serre, A. Cooper, G. Ferey, Chem. Soc. Rev. 46 (2017) 3104-3107.
    [15]
    H.-C. “Joe” Zhou, S. Kitagawa, Chem. Soc. Rev. 43 (2014) 5415-5418.
    [16]
    A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Cryst. Growth Des. 10 (2010) 2839-2841.
    [17]
    J. Yu, L.-H. Xie, J.-R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev. 117 (2017) 9674-9754.
    [18]
    B. Valizadeh, T.N. Nguyen, K.C. Stylianou, Polyhedron 145 (2018) 1-15.
    [19]
    W. Yu, M. Gao, A.-H.A. Park, in: Abstr. Pap. Am. Chem. Soc., AMER CHEMICAL SOC, 16TH ST, NW, WASHINGTON, DC 20036 USA, 2018, p. 1155.
    [20]
    W. Yu, T. Wang, A.-H. Alissa Park, M. Fang, Ind. & Eng. Chem. Res. 59 (2020) 9746-9759.
    [21]
    J.J. Vericella, S.E. Baker, J.K. Stolaroff, E.B. Duoss, J.O. Hardin, J. Lewicki, E. Glogowski, W.C. Floyd, C.A. Valdez, W.L. Smith, J.H. Satcher, W.L. Bourcier, C.M. Spadaccini, J.A. Lewis, R.D. Aines, Nat. Commun. 6 (2015) 1-7.
    [22]
    J.K. Stolaroff, C. Ye, J.S. Oakdale, S.E. Baker, W.L. Smith, D.T. Nguyen, C.M. Spadaccini, R.D. Aines, Faraday Discuss. 192 (2016) 271-281.
    [23]
    S.A. Nabavi, G.T. Vladisavljevic, S. Gu, V. Manovic, Langmuir 32 (2016) 9826-9835.
    [24]
    A. Raksajati, M.T. Ho, D.E. Wiley, Ind. Eng. Chem. Res. 56 (2017) 1604-1620.
    [25]
    J.R. Finn, J.E. Galvin, Int. J. Greenh. Gas Control 74 (2018) 191-205.
    [26]
    J.K. Stolaroff, C. Ye, D.T. Nguyen, J. Oakdale, J.M. Knipe, S.E. Baker, Energy Procedia 114 (2017) 860-865.
    [27]
    T. Moore, K.A. Mumford, G.W. Stevens, P.A. Webley, AIChE J. 64 (2018) 4066-4079.
    [28]
    K. Hornbostel, D. Nguyen, W. Bourcier, J. Knipe, M. Worthington, S. Mccoy, J. Stolaroff, Appl. Energy 235 (2019) 1192-1204.
    [29]
    M. Faustini, J. Kim, G.-Y. Jeong, J.Y. Kim, H.R. Moon, W.-S. Ahn, D.-P. Kim, J. Am. Chem. Soc. 135 (2013) 14619-14626.
    [30]
    S.A. Nabavi, T. Vladisavljevicavladisavljevica, V. Manovicb, M. Manovicb, Chem. Eng. J. 322 (2017) 140-148.
    [31]
    S.A. Nabavi, G.T. Vladisavljevicavladisavljevica, M.V Bandulasena, O. Arjmandi-Tash, V. Manovicb, M. Manovicb, J. Colloid Interface Sci. 505 (2017) 315-324.
    [32]
    J. POKORNY,Richard, P. Thomas, Hardcoats, WO 2009/029438 Al, 2008.
    [33]
    S. Ye, X. Jiang, L.W. Ruan, B. Liu, Y.M. Wang, J.F. Zhu, L.G. Qiu, Microporous Mesoporous Mater. 179 (2013) 191-197.
    [34]
    X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Microporous Mesoporous Mater. 183 (2014) 69-73.
    [35]
    C. Dey, T. Kundu, B.P. Biswal, A. Mallick, R. Banerjee, IUCr, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 70 (2014) 3-10.
    [36]
    A. Sachse, R. Ameloot, B. Coq, F. Fajula, B. Coasne, D. De Vos, A. Galarneau, Chem. Commun. 48 (2012) 4749-4751.
    [37]
    S.M. Moosavi, A. Chidambaram, L. Talirz, M. Haranczyk, K.C. Stylianou, B. Smit, Nat. Commun. 2019 101 10 (2019) 1-7.
    [38]
    Tina Duren, Franck Millange, Gerard Ferey, and Krista S. Walton, R.Q. Snurr, J. Phys. Chem. C 111 (2007) 15350-15356.
    [39]
    J.M. Knipe, K.P. Chavez, K.M. Hornbostel, M.A. Worthington, D.T. Nguyen, C. Ye, W.L. Bourcier, S.E. Baker, J.F. Brennecke, J.K. Stolaroff, Environ. Sci. Technol. 53 (2019) 2926-2936.
    [40]
    Y. Chen, Z. Qiao, J. Huang, H. Wu, J. Xiao, Q. Xia, H. Xi, J. Hu, J. Zhou, Z. Li, ACS Appl. Mater. Interfaces 10 (2018) 38638-38647.
    [41]
    H.A. Patel, J. Byun, C.T. Yavuz, ChemSusChem 10 (2017) 1303-1317.
    [42]
    G. Rim, T.G. Feric, T. Moore, A.-H.A. Park, Adv. Funct. Mater. 31 (2021) 2010047.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (354) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return