Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Wending Pan, Yifei Wang, Holly Y. H. Kwok, Dennis Y. C. Leung. Aluminum-air battery with cotton substrate: Controlling the discharge capacity by electrolyte pre-deposition. Green Energy&Environment, 2023, 8(3): 757-766. doi: 10.1016/j.gee.2021.05.003
Citation: Wending Pan, Yifei Wang, Holly Y. H. Kwok, Dennis Y. C. Leung. Aluminum-air battery with cotton substrate: Controlling the discharge capacity by electrolyte pre-deposition. Green Energy&Environment, 2023, 8(3): 757-766. doi: 10.1016/j.gee.2021.05.003

Aluminum-air battery with cotton substrate: Controlling the discharge capacity by electrolyte pre-deposition

doi: 10.1016/j.gee.2021.05.003
  • Conventional Al-air battery has many disadvantages for miniwatt applications, such as the complex water management, bulky electrolyte storage and potential leakage hazard. Moreover, the self-corrosion of Al anode continues even when the electrolyte flow is stopped, leading to great Al waste. To tackle these issues, an innovative cotton-based aluminum-air battery is developed in this study. Instead of flowing alkaline solution, cotton substrate pre-deposited with solid alkaline is used, together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ. In this manner, the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir, while the thick aluminum anode can be reused for tens of times until complete consumption. The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte, leading to a high peak power density of 73 mW cm-2 and a high specific energy of 930 mW h g-1. Moreover, the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline, so that it can be precisely controlled according to the mission profile to avoid Al waste. Finally, a two-cell battery pack with common water reservoir is developed, which can provide a voltage of 2.7 V and a power output of 223.8 mW. With further scaling-up and stacking, this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.

     

  • • A cotton-based Al-air battery is proposed for recharging miniwatt electronics. • Electrolyte is pre-deposited inside the cotton to control the discharge capacity. • A high power density of 73 mW cm−2 and specific energy of 930 mW h g−1 are achieved. • A two-cell battery pack with 2.7 V OCV and 223.8 mW power output is demonstrated. • This novel Al-air battery is low cost, lightweight and green for outdoor missions.
  • loading
  • [1]
    R. O'hayre; S.-W. Cha; W. Colella; F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons: 2016.
    [2]
    F. Cheng; J. Chen, Chemical Society Reviews 41 (2012) 2172-2192.
    [3]
    A. Kraytsberg; Y. Ein-Eli, Journal of Power Sources 196 (2011) 886-893.
    [4]
    P. Gu; M. Zheng; Q. Zhao; X. Xiao; H. Xue; H. Pang, Journal of Materials Chemistry A 5 (2017) 7651-7666.
    [5]
    Y. Liu; Q. Sun; W. Li; K.R. Adair; J. Li; X. Sun, Green Energy & Environment 2 (2017) 246-277.
    [6]
    T. Zhang; Z. Tao; J. Chen, Materials Horizons 1 (2014) 196-206.
    [7]
    D. Egan; C.P. De Leon; R. Wood; R. Jones; K. Stokes; F. Walsh, Journal of Power Sources 236 (2013) 293-310.
    [8]
    M. Mokhtar; M.Z.M. Talib; E.H. Majlan; S.M. Tasirin; W.M.F.W. Ramli; W.R.W. Daud; J. Sahari, Journal of Industrial and Engineering Chemistry 32 (2015) 1-20.
    [9]
    E. Shkolnikov; A. Zhuk; M. Vlaskin, Renewable and sustainable energy reviews 15 (2011) 4611-4623.
    [10]
    S. Zaromb, Journal of The Electrochemical Society 109 (1962) 1125-1130.
    [11]
    R. Mori, Electrochemical Energy Reviews 3 (2020) 344-369.
    [12]
    L. Fan; H. Lu; J. Leng, Electrochimica Acta 165 (2015) 22-28.
    [13]
    J. Ma; J. Wen; J. Gao; Q. Li, Electrochimica Acta 129 (2014) 69-75.
    [14]
    I.-J. Park; S.-R. Choi; J.-G. Kim, Journal of Power Sources 357 (2017) 47-55.
    [15]
    Y. Xue; S. Sun; Q. Wang; H. Miao; S. Li; Z. Liu, Electrochimica Acta 230 (2017) 418-427.
    [16]
    M. Li; J. Yuan; B. Nan; Y. Zhu; S. Yu; Y. Shi; M. Yang; Z. Wang; Y. Gu; Z. Lu, Electrochimica Acta 249 (2017) 413-420.
    [17]
    K. Liu; Z. Zhou; H.-Y. Wang; X. Huang; J. Xu; Y.-G. Tang; J. Li; H. Chu; J. Chen, RSC Advances (2016).
    [18]
    M. Deyab, Electrochimica Acta 244 (2017) 178-183.
    [19]
    D. Wang; D. Zhang; K. Lee; L. Gao, Journal of Power Sources 297 (2015) 464-471.
    [20]
    E. Grishina; D. Gelman; S. Belopukhov; D. Starosvetsky; A. Groysman; Y. Ein-Eli, ChemSusChem 9 (2016) 2103-2111.
    [21]
    S. Yang; H. Knickle, Journal of power sources 112 (2002) 162-173.
    [22]
    Y. Liu; Q. Sun; X. Yang; J. Liang; B. Wang; A. Koo; R. Li; J. Li; X. Sun, ACS Applied Materials & Interfaces 10 (2018) 19730-19738.
    [23]
    A. Mohamad, Corrosion Science 50 (2008) 3475-3479.
    [24]
    G. Wu; S. Lin; C. Yang, Journal of Membrane Science 280 (2006) 802-808.
    [25]
    Y. Xu; Y. Zhao; J. Ren; Y. Zhang; H. Peng, Angewandte Chemie International Edition 55 (2016) 7979-7982.
    [26]
    Y. Wang; W. Pan; H.Y. Kwok; H. Zhang; X. Lu; D.Y. Leung, Journal of Power Sources 437 (2019) 226896.
    [27]
    A. Avoundjian; V. Galvan; F.A. Gomez, Micromachines 8 (2017) 222.
    [28]
    L.-L. Shen; G.-R. Zhang; M. Biesalski; B.J. Etzold, Lab on a Chip 19 (2019) 3438-3447.
    [29]
    Y. Wang; H. Kwok; W. Pan; H. Zhang; D.Y. Leung, Journal of Power Sources 414 (2019) 278-282.
    [30]
    Y. Wang; H.Y. Kwok; W. Pan; H. Zhang; X. Lu; D.Y. Leung, Applied Energy 251 (2019) 113342.
    [31]
    Y. Wang; H.Y. Kwok; W. Pan; Y. Zhang; H. Zhang; X. Lu; D.Y. Leung, Electrochimica Acta 319 (2019) 947-957.
    [32]
    Y. Wang; H.Y. Kwok; W. Pan; Y. Zhang; H. Zhang; X. Lu; D.Y. Leung, Journal of Power Sources 450 (2020) 227685.
    [33]
    Y.-J. Cho; I.-J. Park; H.-J. Lee; J.-G. Kim, Journal of Power Sources 277 (2015) 370-378.
    [34]
    J. Ren; C. Fu; Q. Dong; M. Jiang; A. Dong; G. Zhu; J. Zhang; B. Sun, ACS Sustainable Chemistry & Engineering 9 (2021) 2300-2308.
    [35]
    C.-C. Yang; S.-S. Chiu; S.-C. Kuo; T.-H. Liou, Journal of Power Sources 199 (2012) 37-45.
    [36]
    J. Li; Z. Zhou; K. Liu; F. Li; Z. Peng; Y. Tang; H. Wang, Journal of Power Sources 343 (2017) 30-38.
    [37]
    Y. Xue; H. Miao; S. Sun; Q. Wang; S. Li; Z. Liu, Journal of Power Sources 342 (2017) 192-201.
    [38]
    B.J. Hopkins; Y. Shao-Horn; D.P. Hart, Science 362 (2018) 658-661.
    [39]
    G.M. Dorris; D.G. Gray, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 77 (1981) 713-724.
    [40]
    S.C. Fernandes; J.A. Walz; D.J. Wilson; J.C. Brooks; C.R. Mace, Beyond wicking: expanding the role of patterned paper as the foundation for an analytical platform. ACS Publications: 2017.
    [41]
    J. Xuan; D. Leung; H. Wang; M.K. Leung; B. Wang; M. Ni, Applied energy 104 (2013) 400-407.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return