Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Zexu Chi, Jingyun Zhao, Yi Zhang, Han Yu, Hongbing Yu. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review. Green Energy&Environment, 2022, 7(3): 372-393. doi: 10.1016/j.gee.2021.05.002
Citation: Zexu Chi, Jingyun Zhao, Yi Zhang, Han Yu, Hongbing Yu. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review. Green Energy&Environment, 2022, 7(3): 372-393. doi: 10.1016/j.gee.2021.05.002

The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review

doi: 10.1016/j.gee.2021.05.002
  • Photoelectrochemical (PEC) technology has been proved a promising approach to solve the problems of energy shortages and environmental pollution damages. It can convert unlimited solar energy resources into energy forms needed by mankind. The development of highly efficient photoanodes is a key step in realizing the large-scale practical application of PEC systems. However, the development of PEC photoanodes has been severely hindered by the issues of easy recombination of photo-generated charge carriers, low photon-to-electron conversion efficiency, poor photo-corrosion resistance, and low catalytic activity. Therefore, constructing high-performance and stable photoanodes is an urgent research field to promote the progress of PEC technology. The atomically thin molybdenum disulfide (AT-MoS2) with unique physical and chemical properties has been widely applied in the fabrication of PEC photoanodes. The AT-MoS2 based photoanodes have exhibited excellent PEC performance, which providing promising candidates for ideal PEC application. Here, we summarize the fundamental natures of MoS2 and present the research efforts in the preparation of AT-MoS2 based photoanodes. Strategies for the fabrication of high-efficient AT-MoS2 based photoanodes are emphasized to provide guidelines to advance emerging PEC photoanodes. Besides, perspectives for the development of more efficient AT-MoS2 based photoanodes are proposed.

     

  • • AT-MoS2-based photoanode displays promising prospects in the PEC systems. • The fundamental natures and typical preparation methods of AT-MoS2 were summarized. • Strategies for preparing efficient AT-MoS2-based photoanodes were highlighted. • The application of AT-MoS2-based photoanodes in many fields was emphasized. • The perspectives and challenges of AT-MoS2-based photoanode were presented.
  • loading
  • [1]
    X. Lu, S. Xie, H. Yang, Y. Tong, H. Ji, Chem. Soc. Rev. 43 (2014) 7581-7593.
    [2]
    K.H. Ye, Z. Wang, J. Gu, S. Xiao, Y. Yuan, Y. Zhu, Y. Zhang, W. Mai, S. Yang, Energy Environ. Sci. 10 (2017) 772-779.
    [3]
    A. Chatzitakis, E. Nikolakaki, S. Sotiropoulos, I. Poulios, Appl. Catal. B Environ. 142-143 (2013) 161-168.
    [4]
    H. Matsumoto, Electrochem. Asp. Ion. Liq. Second Ed. 414 (2001) 221-234.
    [5]
    A. FUJISHIMA, K. HONDA, Nature 238 (1972) 37-38.
    [6]
    J. Liu, J. Li, Y. Li, J. Guo, S.M. Xu, R. Zhang, M. Shao, Appl. Catal. B Environ. 278 (2020) 119268.
    [7]
    J. Wu, X. Han, D. Li, B.E. Logan, J. Liu, Z. Zhang, Y. Feng, Appl. Catal. B Environ. 276 (2020) 119102.
    [8]
    D. Wang, Y. He, N. Zhong, Z. He, Y. Shen, T. Zeng, X. Lu, J. Ma, S. Song, J. Hazard. Mater. 410 (2020) 124563.
    [9]
    S. Zhou, K. Chen, J. Huang, L. Wang, M. Zhang, B. Bai, H. Liu, Q. Wang, Appl. Catal. B Environ. 266 (2020) 118513.
    [10]
    Y.B. Kim, S.H. Jung, D.S. Kim, N.G. Deshpande, H.S. Lee, H.K. Cho, Appl. Catal. B Environ. 285 (2021) 119839.
    [11]
    L. Li, H. Shi, H. Yu, X. Tan, Y. Wang, S. Ge, A. Wang, K. Cui, L. Zhang, J. Yu, Appl. Catal. B Environ. 292 (2021) 120184.
    [12]
    P. Lianos, Appl. Catal. B Environ. 210 (2017) 235-254.
    [13]
    Y. Li, Q. Wu, Y. Chen, R. Zhang, C. Li, K. Zhang, M. Li, Y. Lin, D. Wang, X. Zou, T. Xie, Appl. Catal. B Environ. 290 (2021) 120058.
    [14]
    Q. Qin, Q. Cai, W. Hong, C. Jian, W. Liu, Chem. Eng. J. 402 (2020) 126227.
    [15]
    J. Wang, L. Jiang, F. Liu, M. Jia, M. Liu, J. Li, Y. Lai, Chem. Eng. J. 407 (2021) 127195.
    [16]
    T. Zhou, S. Chen, L. Li, J. Wang, Y. Zhang, J. Li, J. Bai, L. Xia, Q. Xu, M. Rahim, B. Zhou, Appl. Catal. B Environ. 269 (2020) 118776.
    [17]
    M. Zhong, T. Hisatomi, Y. Sasaki, S. Suzuki, K. Teshima, M. Nakabayashi, N. Shibata, H. Nishiyama, M. Katayama, T. Yamada, K. Domen, Angew. Chemie-Int. Ed. 56 (2017) 4739-4743.
    [18]
    M.N. Shaddad, P. Arunachalam, J. Labis, M. Hezam, Appl. Catal. B Environ. 244 (2019) 863-870.
    [19]
    H.S. Bae, R.P. Patil, W.S. Chae, J. Ryu, M.A. Mahadik, J.S. Jang, Chem. Eng. J. 385 (2020) 123871.
    [20]
    R.P. Patil, M.A. Mahadik, H.S. Bae, W.S. Chae, S. Hee Choi, J. Suk Jang, Chem. Eng. J. 402 (2020) 126153.
    [21]
    J. Zhang, B. Tang, G. Zhao, Appl. Catal. B Environ. 279 (2020) 119364.
    [22]
    Y. Fang, X. Li, Y. Wang, C. Giordano, X. Wang, Appl. Catal. B Environ. 268 (2020) 118398.
    [23]
    T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li, J. Bai, B. Zhou, Chem. Eng. J. 403 (2021) 126350.
    [24]
    A. Liao, H. He, Z. Fan, G. Xu, L. Li, J. Chen, Q. Han, X. Chen, Y. Zhou, Z. Zou, J. Catal. 352 (2017) 113-119.
    [25]
    J. Huang, Y. Wang, X. Liu, Y. Li, X. Hu, B. He, Z. Shu, Z. Li, Y. Zhao, Nano Energy 59 (2019) 33-40.
    [26]
    M. Zhou, Z. Liu, Q. Song, X. Li, B. Chen, Z. Liu, Appl. Catal. B Environ. 244 (2019) 188-196.
    [27]
    A.Y. Ahmed, M.G. Ahmed, T.A. Kandiel, Appl. Catal. B Environ. 236 (2018) 117-124.
    [28]
    H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, Nano Lett. 12 (2012) 3695-3700.
    [29]
    J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa, T. Takenobu, Nano Lett. 12 (2012) 4013-4017.
    [30]
    H. Li, Y. Shi, M.H. Chiu, L.J. Li, Nano Energy 18 (2015) 293-305.
    [31]
    J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Noerskov, Nat. Mater. 5 (2006) 909-913.
    [32]
    S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen, H. Zhang, Small 8 (2012) 2264-2270.
    [33]
    H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Small 8 (2012) 63-67.
    [34]
    X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, ACS Sustain. Chem. Eng. 4 (2016) 4055-4063.
    [35]
    K. Ai, C. Ruan, M. Shen, L. Lu, Adv. Funct. Mater. 26 (2016) 5542-5549.
    [36]
    X. Meng, Z. Li, H. Zeng, J. Chen, Z. Zhang, Appl. Catal. B Environ. 210 (2017) 160-172.
    [37]
    R. Tang, R. Yin, S. Zhou, T. Ge, Z. Yuan, L. Zhang, L. Yin, J. Mater. Chem. A 5 (2017) 4962-4971.
    [38]
    J.P. Wilcoxon, G.A. Samara, Phys. Rev. B 51 (1995) 7299-7302.
    [39]
    F.M. Pesci, M.S. Sokolikova, C. Grotta, P.C. Sherrell, F. Reale, K. Sharda, N. Ni, P. Palczynski, C. Mattevi, ACS Catal. 7 (2017) 4990-4998.
    [40]
    M.A. Hassan, K. Min-woo, M.A. Johar, W. Aadil, M. Kwon, Sci. Rep. 9 (2019) 20141.
    [41]
    Q. Ding, B. Song, P. Xu, S. Jin, Chem 1 (2016) 699-726.
    [42]
    M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He, ACS Nano 8 (2014) 8317-8322.
    [43]
    C. Liu, D. Kong, P. Hsu, H. Yuan, H. Lee, H. Wang, S. Wang, K. Yan, D. Lin, P.A. Maraccini, K.M. Parker, A.B. Boehm, Y. Cui, Nat. Nanotechnol. 11 (2016) 1098-1104.
    [44]
    A. Kuc, T. Heine, Chem. Soc. Rev. 44 (2015) 2603-2614.
    [45]
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10 (2010) 1271-1275.
    [46]
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105 (2010) 136805.
    [47]
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4 (2010) 2695-2700.
    [48]
    A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83 (2011) 245213.
    [49]
    M. Chhowalla, H.S. Shin, G. Eda, L. Li, K.P. Loh, H. Zhang, Nat. Publ. Gr. 5 (2013) 263-275.
    [50]
    J. V Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoee, B.S. Clausen, E. Laegsgaard, F. Besenbacher, Nat. Nanotechnol. 2 (2007) 53-58.
    [51]
    A. Tuxen, J. Kibsgaard, H. Goebel, E. Laegsgaard, H. Topsoee, J. V. Lauritsen, F. Besenbacher, ACS Nano 4 (2010) 4677-4682.
    [52]
    D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Chem. Sci. 3 (2012) 2515-2525.
    [53]
    J. V. Lauritsen, J. Kibsgaard, G.H. Olesen, P.G. Moses, B. Hinnemann, S. Helveg, J.K. Noerskov, B.S. Clausen, H. Topsoee, E. Laegsgaard, F. Besenbacher, J. Catal. 249 (2007) 220-233.
    [54]
    M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113 (2013) 3766-3798.
    [55]
    Q.H. Wang, K. Kalantar-zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Publ. Gr. 7 (2012) 699-712.
    [56]
    M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.L. Zhang, A.Z. Moshfegh, Nanoscale Horizons 3 (2018) 90-204.
    [57]
    Y. Li, Y.L. Li, B. Sa, R. Ahuja, Catal. Sci. Technol. 7 (2017) 545-559.
    [58]
    R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Adv. Mater. 23 (2011) 3944-3948.
    [59]
    Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chemie Int. Ed. 50 (2011) 11093-11097.
    [60]
    C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng, X. Qi, M.H. Goh, J. Wang, S. Han, X.J. Wu, L. Gu, C. Kloc, H. Zhang, Adv. Mater. 30 (2018) 1-9.
    [61]
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 12 (2012) 526.
    [62]
    Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8 (2012) 966-971.
    [63]
    Y. Lee, X. Zhang, W. Zhang, M. Chang, C. Lin, Y. Yu, J.T. Wang, C. Chang, L. Li, T. Lin, Adv. Mater. 24 (2012) 2320-2325.
    [64]
    Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Z. Yang, Y. Qian, J. Solid State Chem. 159 (2001) 170-173.
    [65]
    X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, S. Liu, J. Mater. Chem. A 3 (2015) 10693-10697.
    [66]
    A. Polman, H.A. Atwater, Nat. Mater. 11 (2012) 174-177.
    [67]
    G. Eda, S.A. Maier, ACS Nano 7 (2013) 5660-5665.
    [68]
    A. Carvalho, R.M. Ribeiro, A.H. Castro Neto, Phys. Rev. B-Condens. Matter Mater. Phys. 88 (2013) 1-6.
    [69]
    X. Xu, J. Hu, Z. Yin, C. Xu, ACS Appl. Mater. Interfaces 6 (2014) 5983-5987.
    [70]
    S.J. Davis, K. Caldeira, H.D. Matthews, Science 329 (2010) 1330-1333.
    [71]
    M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 332-337.
    [72]
    Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625-627.
    [73]
    R. B. Wei, P. Y. Kuang, H. Cheng, Y. B. Chen, J. Y. Long, M. Y. Zhang, Z. Q. Liu, ACS Sustain. Chem. Eng. 5 (2017) 4249-4257.
    [74]
    H. Cheng, C. Y. Su, Z. Y. Tan, S. Z. Tai, Z. Q. Liu, J. Power Sources 357 (2017) 1-10.
    [75]
    Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Small 10 (2014) 3537-3543.
    [76]
    A. Ali, F.A. Mangrio, X. Chen, Y. Dai, K. Chen, X. Xu, R. Xia, L. Zhu, Nanoscale 11 (2019) 7813-7824.
    [77]
    J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti, T.-P. Fellinger, J. Am. Chem. Soc. 137 (2015) 5480-5485.
    [78]
    X. Xu, G. Zhou, X. Dong, J. Hu, ACS Sustain. Chem. Eng. 5 (2017) 3829-3836.
    [79]
    H. Kroemer, ChemPhysChem 2 (2001) 490-499.
    [80]
    Z. Zheng, X. Zu, Y. Zhang, W. Zhou, Mater. Today Phys. 15 (2020) 100262.
    [81]
    Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z.-H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.-M. Cheng, W. J. Zhang, I. Bello, S. T. Lee, ACS Nano 4 (2010) 3482-3488.
    [82]
    Z. Zhou, J. Fan, X. Wang, W. Sun, W. Zhou, Z. Du, S. Wu, ACS Appl. Mater. Interfaces 3 (2011) 2189-2194.
    [83]
    Y.Y. Li, J.H. Wang, Z.J. Luo, K. Chen, Z.Q. Cheng, L. Ma, S.J. Ding, L. Zhou, Q.Q. Wang, Sci. Rep. 7 (2017) 1-8.
    [84]
    A. Trenczek-Zajac, J. Banas, M. Radecka, Int. J. Hydrogen Energy 43 (2018) 6824-6837.
    [85]
    Y. Park, K.J. McDonald, K.-S. Choi, Chem. Soc. Rev. 42 (2013) 2321-2337.
    [86]
    D.K. Zhong, S. Choi, D.R. Gamelin, J. Am. Chem. Soc. 133 (2011) 18370-18377.
    [87]
    Q. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li, L. Zou, Q. Huang, Z. Zou, H. Yang, ACS Sustain. Chem. Eng. 6 (2018) 6378-6387.
    [88]
    F. Nan, T. Cai, S. Ju, L. Fang, Appl. Phys. Lett. 112 (2018) 2-7.
    [89]
    F. Xue, L. Chen, J. Chen, J. Liu, L. Wang, M. Chen, Y. Pang, X. Yang, G. Gao, J. Zhai, Z.L. Wang, Adv. Mater. 28 (2016) 3391-3398.
    [90]
    Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Adv. Funct. Mater. 29 (2019) 1808032.
    [91]
    H. Si, Z. Kang, Q. Liao, Z. Zhang, X. Zhang, L. Wang, Y. Zhang, Sci. China Mater. 60 (2017) 793-810.
    [92]
    Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang, Y. Zhang, Sci. Rep. 5 (2015) 1-7.
    [93]
    T.N. Trung, D.B. Seo, N.D. Quang, D. Kim, E.T. Kim, Electrochim. Acta 260 (2018) 150-156.
    [94]
    W. Jian, X. Cheng, Y. Huang, Y. You, R. Zhou, T. Sun, J. Xu, Chem. Eng. J. 328 (2017) 474-483.
    [95]
    K. Karmakar, D. Maity, D. Pal, K. Mandal, G.G. Khan, ACS Appl. Nano Mater. 3 (2020) 1223-1231.
    [96]
    Y. Zeng, T. Zhang, H. Fan, G. Lu, M. Kang, Sensors Actuators B Chem. 143 (2009) 449-453.
    [97]
    R. Kumaravel, K. Ramamurthi, I. Sulania, K. Asokan, D. Kanjilal, D.K. Avasti, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 285 (2012) 61-64.
    [98]
    J. Ma, C. Lu, C. Liu, M. Qi, X. Xu, D. Yang, X. Xu, J. Alloys Compd. 810 (2019) 151845.
    [99]
    D. Meissner, R. Memming, B. Kastening, D. Bahnemann, Chem. Phys. Lett. 127 (1986) 419-423.
    [100]
    A. Pareek, H.G. Kim, P. Paik, P.H. Borse, J. Mater. Chem. A 5 (2017) 1541-1547.
    [101]
    J.H. Park, H. Shin, ACS Appl. Mater. Inter. 11 (2019) 37586-37594.
    [102]
    Y. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, Z. Chen, ACS Nano 10 (2016) 2903-2909.
    [103]
    S.S.M. Bhat, S.A. Pawar, D. Potphode, C. K. Moon, J.M. Suh, C. Kim, S. Choi, D.S. Patil, J. J. Kim, J.C. Shin, H.W. Jang, Appl. Catal. B Environ. 259 (2019) 118102.
    [104]
    I. Waki, D. Cohen, R. Lal, U. Mishra, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 91 (2007) 93519.
    [105]
    A.K. Geim, I. V Grigorieva, Nature 499 (2013) 419-425.
    [106]
    M. Palummo, M. Bernardi, J.C. Grossman, Nano Lett. 15 (2015) 2794-2800.
    [107]
    C. Lu, J. Ma, K. Si, X. Xu, C. Quan, C. He, X. Xu, Phys. Status Solidi Appl. Mater. Sci. 216 (2019) 1-9.
    [108]
    K. Si, J. Ma, C. Lu, Y. Zhou, C. He, D. Yang, X. Wang, X. Xu, Appl. Surf. Sci. 507 (2020) 145082.
    [109]
    S. Xu, D. Li, P. Wu, Adv. Funct. Mater. 25 (2015) 1127-1136.
    [110]
    G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong, P.K. Chu, Adv. Funct. Mater. 26 (2016) 3349-3358.
    [111]
    Y. Xiao, W. Zhang, Electrochim. Acta 252 (2017) 416-423.
    [112]
    T.R. Thurston, J.P. Wilcoxon, J. Phys. Chem. B 103 (1999) 11-17.
    [113]
    V. Subramanian, E.E. Wolf, P. V Kamat, J. Am. Chem. Soc. 126 (2004) 4943-4950.
    [114]
    Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, Adv. Mater. 26 (2014) 8163-8168.
    [115]
    J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. (David) Lou, Y. Xie, Adv. Mater. 25 (2013) 5807-5813.
    [116]
    Z.Q. Wei, X.C. Dai, S. Hou, Y.B. Li, M.H. Huang, T. Li, S. Xu, F.X. Xiao, J. Mater. Chem. A 8 (2019) 177-189.
    [117]
    H. Huang, C. Du, H. Shi, X. Feng, J. Li, Y. Tan, W. Song, Part. Part. Syst. Charact. 32 (2015) 72-79.
    [118]
    X. Li, X. Lv, N. Li, J. Wu, Y. Zheng, X. Tao, Applied Catal. B, Environ. 243 (2019) 76-85.
    [119]
    X. Li, Y. Yuan, Y. Huang, H. Liu, Z. Bi, Y. Yuan, P. Yang, Sci. Total Environ. 631-632 (2018) 153-157.
    [120]
    H. Huang, L. Huang, Q. Zhang, Y. Jiang, L. Ding, Chemosphere 136 (2015) 289-296.
    [121]
    Y. Koksal, S. Penez, Metrologia 53 (2015) 1-116.
    [122]
    H.A. Hasan, S.R.S. Abdullah, S.K. Kamarudin, N.T. Kofli, Environ. Eng. Manag. J. 17 (2018) 199-207.
    [123]
    Y. Yang, J. Shin, J.T. Jasper, M.R. Hoffmann, Environ. Sci. Technol. 50 (2016) 8780-8787.
    [124]
    J.T. Jasper, Y. Yang, M.R. Hoffmann, Environ. Sci. Technol. 51 (2017) 7111-7119.
    [125]
    J.T. Jasper, O.S. Shafaat, M.R. Hoffmann, Environ. Sci. Technol. 50 (2016) 10198-10208.
    [126]
    G. Liu, S. You, Y. Tan, N. Ren, Environ. Sci. Technol. 51 (2017) 2339-2346.
    [127]
    S. Liu, X. Zhao, H. Zeng, Y. Wang, M. Qiao, W. Guan, Chem. Eng. J. 320 (2017) 168-177.
    [128]
    J. Sun, Y. Guo, Y. Wang, D. Cao, S. Tian, K. Xiao, R. Mao, X. Zhao, Chem. Eng. J. 332 (2018) 312-320.
    [129]
    X. Fan, Y. Zhou, G. Zhang, T. Liu, W. Dong, Appl. Catal. B Environ. 244 (2019) 396-406.
    [130]
    Y. Qu, X. Song, X. Chen, X. Fan, G. Zhang, X. Song, X. Chen, X. Fan, G. Zhang, Chem. Eng. J. 382 (2020) 123048.
    [131]
    Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan, Nat. Mater. 13 (2014) 1135-1142.
    [132]
    L. Ai, L. Li, Chem. Eng. J. 223 (2013) 688-695.
    [133]
    J. Luo, Y. Wang, D. Cao, K. Xiao, T. Guo, X. Zhao, Chem. Eng. J. 343 (2018) 69-77.
    [134]
    S. Garcia-Segura, E. Brillas, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1-35.
    [135]
    Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, Y. Zhu, Appl. Catal. B Environ. 201 (2017) 600-606.
    [136]
    R.C. Pawar, Y. Pyo, S.H. Ahn, C.S. Lee, Appl. Catal. B Environ. 176-177 (2015) 654-666.
    [137]
    Y. Cong, J. Wang, H. Jin, X. Feng, Q. Wang, Y. Ji, Y. Zhang, Ind. Eng. Chem. Res. 55 (2016) 1221-1228.
    [138]
    J. Li, X. Liu, L. Pan, W. Qin, T. Chen, Z. Sun, RSC Adv. 4 (2014) 9647-9651.
    [139]
    S. Zhang, L. Wang, C. Liu, J. Luo, J. Crittenden, X. Liu, T. Cai, J. Yuan, Y. Pei, Y. Liu, Water Res. 121 (2017) 11-19.
    [140]
    Y. Zhou, X. Fan, G. Zhang, W. Dong, Chem. Eng. J. 356 (2019) 1003-1013.
    [141]
    K. Kummerer, Chemosphere 75 (2009) 417-434.
    [142]
    Y. Ji, C. Ferronato, A. Salvador, X. Yang, J.-M. Chovelon, Sci. Total Environ. 472 (2014) 800-808.
    [143]
    E.H. Umukoro, N. Kumar, J.C. Ngila, O.A. Arotiba, J. Electroanal. Chem. 827 (2018) 193-203.
    [144]
    A. Li, X. Zhao, H. Liu, J. Qu, Water Res. 45 (2011) 6131-6140.
    [145]
    Q. Zhou, Z. Yue, Q. Li, R. Zhou, L. Liu, Environ. Sci. Technol. 53 (2019) 13408-13416.
    [146]
    G. Li, X. Nie, J. Chen, P.K. Wong, T. An, H. Yamashita, H. Zhao, Water Res. 101 (2016) 597-605.
    [147]
    C. Liu, D. Kong, P.-C. Hsu, H. Yuan, H.-W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P.A. Maraccini, K.M. Parker, A.B. Boehm, Y. Cui, Nat. Nanotechnol. 11 (2016) 1098-1104.
    [148]
    G. Zhang, Z. Zhang, D. Xia, Y. Qu, W. Wang, J. Hazard. Mater. 392 (2020) 122292
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (584) PDF downloads(41) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return