Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Zhanchao Li, Yizhuo Wang, Qing Li, Liqing Xu, Hong Wang. High tension cyclic hydrocarbons synthesized from biomass-derived platform molecules for aviation fuels in two steps. Green Energy&Environment, 2023, 8(1): 331-337. doi: 10.1016/j.gee.2021.04.012
Citation: Zhanchao Li, Yizhuo Wang, Qing Li, Liqing Xu, Hong Wang. High tension cyclic hydrocarbons synthesized from biomass-derived platform molecules for aviation fuels in two steps. Green Energy&Environment, 2023, 8(1): 331-337. doi: 10.1016/j.gee.2021.04.012

High tension cyclic hydrocarbons synthesized from biomass-derived platform molecules for aviation fuels in two steps

doi: 10.1016/j.gee.2021.04.012
  • Synthesizing ring structure aviation fuels from biomass-derived platform molecules is challenging, especially for bridged ring structure aviation fuels which are typically achieved from fossil-derived chemicals. Herein, we report the synthesis of a series of ring structure biofuels in two steps by a combination of a solvent-free Michael-cyclization reaction and a hydrodeoxygenation (HDO) reaction from lignocellulose-derived 5,5-dimethyl-1,3-cyclohexanedione. These biofuels are obtained with high overall yields up to 90%, which exhibit high densities of 0.81 g cm-3-0.88 g cm-3 and high volumetric neat heat of combustion (VNHOC) values of 36.0 MJ L-1-38.6 MJ L-1. More importantly, bridged-ring structure hydrocarbons can also be achieved in two steps by a combination of a Robinson annulation reaction and an HDO reaction to afford the final products at high overall yields up to 90%. The bridged-ring structure products have comparable high densities and high VNHOC values to the best artificial fuel JP-10 (0.94 g cm-3 and 39.6 MJ L-1). The results demonstrate a promising way for the synthesis of high-density aviation fuels with different fuel properties at high yields.

     

  • • A series of high tension cyclic hydrocarbons synthesized from biomass-derived platform molecules. • The products obtained at high yields up to 90% within two steps. • Obtained biofuels exhibited high fuel properties close to those of the best artificial fuel JP-10.
  • loading
  • [1]
    E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz, C. A. Gartner, J. A. Dumesic, Science 322 (2008) 417-421
    [2]
    G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science 308 (2005) 1446-1450
    [3]
    P. Sudarsanam, R. Zhong, S. Van Den Bosch, S. M. Coman, V. I. Parvulescu, B. F. Sels, Chem. Soc. Rev. 47 (2018) 8349-8402
    [4]
    M. Zhao, W. Lu, Acta Phys.-Chim. Sin. 35 (2019) 977-988
    [5]
    P. Sudarsanam, E. Peeters, E. V. Makshina, V. I. Parvulescu, B. F. Sels, Chem. Soc. Rev. 48 (2019) 2366-2421
    [6]
    C. H. Zhou, X. Xia, C. X. Lin, D. S. Tong, J. Beltramini, Chem. Soc. Rev. 40 (2011) 5588-5617
    [7]
    C. Zhao, Y. Kou, A. A. Lemonidou, X. Li, J. A. Lercher, Angew. Chem. Int. Ed. 48 (2009) 3987-3990
    [8]
    W. Wang, N. Li, G. Li, S. Li, W. Wang, A. Wang, Y. Cong, X. Wang, T. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 1812-1817
    [9]
    S. Li, F. Chen, N. Li, W. Wang, X. Sheng, A. Wang, Y. Cong, X. Wang, T. Zhang, ChemSusChem 10 (2017) 711-719
    [10]
    H. A. Meylemans, R. L. Quintana, B. R. Goldsmith, B. G. Harvey, ChemSusChem 4 (2011) 465-469
    [11]
    H. S. Chung, C. S. H. Chen, R. A. Kremer, J. R. Boulton, G. W. Burdette, Energ. Fuel 13 (1999) 641-649
    [12]
    J. C. Serrano-Ruiz, R. Luque, A. Sepulveda-Escribano, Chem. Soc. Rev. 40 (2011) 5266-5281
    [13]
    M. J. Climent, A. Corma, S. Iborra, Green Chem. 16 (2014) 516-547
    [14]
    H. Li, A. Riisager, S. Saravanamurugan, A. Pandey, R. S. Sangwan, S. Yang, R. Luque, ACS Catal. 8 (2018) 148-187
    [15]
    Q. Zhu, L. Yin, K. Ji, C. Li, B. Wang, T. Tan, ACS Sustain. Chem. Eng. 8 (2020) 1555-1565
    [16]
    A. Corma, O. De La Torre, M. Renz, Energy Environ. Sci. 5 (2012) 6328-6344
    [17]
    R. Xing, A. V. Subrahmanyam, H. Olcay, W. Qi, G. P. Van Walsum, H. Pendse, G. W. Huber, Green Chem. 12 (2010) 1933-1946
    [18]
    Y. Wang, D. Zhang, Z. Wan, P. Li, C. Zhang, Acta Phys.-Chim. Sin. 35 (2019) 591-597
    [19]
    B. G. Harvey, H. A. Meylemans, J. Chem. Technol. Biotechnol. 86 (2011) 2-9
    [20]
    J. Zou, N. Chang, X. Zhang, L. Wang, ChemCatChem 4 (2012) 1289-1297
    [21]
    J. Xu, N. Li, G. Li, F. Han, A. Wang, Y. Cong, X. Wang, T. Zhang, Green Chem. 20 (2018) 3753-3760
    [22]
    J. Xie, X. Zhang, L. Pan, G. Nie, X. E, Q. Liu, P. Wang, Y. Li, J.J. Zou, Chem. Commun. 53 (2017) 10303-10305
    [23]
    G. Li, B. Hou, A. Wang, X. Xin, T. Zhang, Angew. Chem. Int. Ed. 131 (2019)
    [24]
    S. Takkellapati, T. Li, M. A. Gonzalez, Clean Technol. and Envir. 20 (2018) 1615-1630
    [25]
    P. Durre, Biotechnol. J. 2 (2007) 1525-1534
    [26]
    L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty, F. D. Toste, Chem 1 (2016) 32-58
    [27]
    H. Chang, A. H. Motagamwala, G. W. Huber, J. A. Dumesic, Green Chem. 21 (2019) 5532-5540
    [28]
    E. P. Peters, G. J. Schlakman, E. N. Yang, Senior Design Reports; SAE: Ahmedabad, India, Volume 107 (2018)
    [29]
    L. Martinez-Zamora, G. Ros, G. Nieto, Plants 9 (2020) 659
    [30]
    V. R. Dhongde, B. S. De, K. L. Wasewar, J. Chem. Engin. Data 64 (2019) 1072-1084
    [31]
    Majewski, Snieckus, Science of Synthesis (2006) 1011-1040
    [32]
    J. Wang, G. Han, X. Wu, Chin. J. Org. Chem. 23 (2003) 827-831
    [33]
    D. Vorlander, Z. Phys. Chem. 77 (1929) 241-268
    [34]
    Y. Liu, X. Liu, M. Wang, P. He, L. Lin, X. Feng, J. Org. Chem. 77 (2012) 4136-4142
    [35]
    S. Hoz, Acc. Chem. Res. 26 (1993) 69-74
    [36]
    S. Cheng, H. Wang, Y. Xie, Chin. J. Chem. Edu. 36 (2015) 19-21
    [37]
    S. Liu, Q. Zhu, Q. Guan, L. He, W. Li, Bioresour. Technol. 183 (2015) 93-100
    [38]
    Z. Li, R. S. Assary, A. C. Atesin, L. A. Curtiss, T. J. Marks, J. Am. Chem. Soc. 136 (2014) 104-107
    [39]
    T. L. Lohr, Z. Li, R. S. Assary, L. A. Curtiss, T. J. Marks, Energy Environ. Sci. 9 (2016) 550-564
    [40]
    C. Zhao, J. He, A. A. Lemonidou, X. Li, J. A. Lercher, J. Catal. 280 (2011) 8-16
    [41]
    J. W. Ochterski, Thermochemistry in Gaussian 2000
    [42]
    A.D. Sutton, F. D. Waldie, R. Wu, M. Schlaf, L.A. ‘Pete’ Silks, J. C. Gordon, Nat. Chem. 5 (2013) 428-432
    [43]
    B. G. Harvey, R. L. Quintana, Energy Environ. Sci. 3 (2010) 352-357
    [44]
    A. Corma, O. De La Torre, M. Renz, N. Villandier, Angew. Chem. Int. Ed. 50 (2011) 2375-2378
    [45]
    Q. Xia, Q. Cuan, X. Liu, X. Gong, G. Lu, Y. Wang, Angew. Chem. Int. Ed. 53 (2014) 9755-9760
    [46]
    D. Liu, E. Y. X. Chen, ACS Catal. 4 (2014) 1302-1310
    [47]
    L. K. Sharma, K. B. Kim, G. I. Elliott, Green Chem. 13 (2011) 1546-1549
    [48]
    X. Yang, T. Li, K. Tang, X. Zhou, M. Lu, W. L. Ounkham, S. M. Spain, B. J. Frost, H. Lin, Green Chem. 19 (2017) 3566-3573
    [49]
    K. S. Arias, M. J. Climent, A. Corma, S. Iborra, Energy Environ. Sci. 8 (2015) 317-331
    [50]
    N. Ji, X. Wang, C. Weidenthaler, B. Spliethoff, R. Rinaldi, ChemCatChem 7 (2015) 960-966
    [51]
    D. Takei, T. Yatabe, X. Jin, T. Yabe, N. Mizuno, K. Yamaguchi, ACS Catal. 10 (2020) 5057-5063
    [52]
    H. Liu, T. Jiang, B. Han, S. Liang, Y. Zhou, Science 326 (2009) 1250-1252
    [53]
    F. Liu, Q. Liu, A. Wang, T. Zhang, ACS Sustain. Chem. Eng. 4 (2016) 3850-3856
    [54]
    C. Zhao, J. A. Lercher, Angew. Chem. Int. Ed. 51 (2012) 5935-5940
    [55]
    H. O. House, P. C. Gaa, J. H. C. Lee, D. Vanderveer, J. Organ. Chem. 48 (1983) 1670-1678
    [56]
    J. Dauben, H. J. Ringold, R. H. Wade, D. L. Pearson, A. G. Anderson, Organic Synthesis 34 (1954) 19
    [57]
    Q. Deng, G. Nie, L. Pan, J. Zou, X. Zhang, L. Wang, Green Chem. 17 (2015) 4473-4481
    [58]
    X. Sheng, G. Li, W. Wang, Y. Cong, X. Wang, G. W. Huber, N. Li, A. Wang, T. Zhang, AIChE Journal 62 (2016) 2754-2761
    [59]
    P. V. R. Schleyer, J. Am. Chem. Soc. 79 (1957) 3292-3292
    [60]
    P. V. R. Schleyer, M.M. Donaldson, J. Am. Chem. Soc. 82 (1960) 4645-4651
    [61]
    E. Osawa, Y. Tahara, A. Togashi, T. Iizuka, N. Tanaka, T. Kan, D. Farcasiu, G. J. Kent, E. M. Engler, P. V. R. Schleyer, J. Org. Chem. 47 (1982) 1923-1932
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return