Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Lu Chen, Wenqian Zhang, Junfeng Wang, Xiaojing Li, Yi Li, Xin Hu, Leihong Zhao, Ying Wu, Yiming He. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy&Environment, 2023, 8(1): 283-295. doi: 10.1016/j.gee.2021.04.009
Citation: Lu Chen, Wenqian Zhang, Junfeng Wang, Xiaojing Li, Yi Li, Xin Hu, Leihong Zhao, Ying Wu, Yiming He. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy&Environment, 2023, 8(1): 283-295. doi: 10.1016/j.gee.2021.04.009

High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation

doi: 10.1016/j.gee.2021.04.009
  • In this work, Ag/Bi5O7I nanocomposite was prepared and firstly applied in piezo/photocatalytic reduction of N2 to NH3 and methyl orange (MO) degradation. Bi5O7I was synthesized via a hydrothermal-calcination method and shows nanorods morphology. Ag nanoparticles (NPs) were photo deposited on the Bi5O7I nanorods as electron trappers to improve the spatial separation of charge carriers, which was confirmed via XPS, TEM, and electronic chemical analyses. The catalytic test indicates that Bi5O7I presents the piezoelectric-like behavior, while the loading of Ag NPs can strengthen the character. Under ultrasonic vibration, the optimal Ag/Bi5O7I presents high efficiency in MO degradation. The degradation rate is determined to be 0.033 min-1, which is 4.7 folds faster than that of Bi5O7I. The Ag/Bi5O7I also presents a high performance in piezocatalytic N2 fixation. The piezocatalytic NH3 generation rate reaches 65.4 μmol L-1 g-1 h-1 with water as a hole scavenger. The addition of methanol can hasten the piezoelectric catalytic reaction. Interestingly, when ultrasonic vibration and light irradiation simultaneously act on the Ag/Bi5O7I catalyst, higher performance in NH3 generation and MO degradation is observed. However, due to the weak adhesion of Ag NPs, some Ag NPs would fall off from the Bi5O7I surface under long-term ultrasonic vibration, which would greatly reduce the piezoelectric catalytic performance. This result indicates that a strong binding force is required when preparing the piezoelectric composite catalyst. The current work provides new insights for the development of highly efficient catalysts that can use multiple energies.

     

  • • Ag/Bi5O7I composite was prepared by combining the hydrothermal and photodepostion process. • Ag/Bi5O7I composite can harvest vibration and solar energy for piezo-/photocatalytic N2 fixation. • Ag/Bi5O7I presented much better performance in photo-/piezocatalytic N2 fixation than pure Bi5O7I. • The loaded Ag improved catalytic performance by enhancing the charge separation. • The promotion effect of methanol scavenger in photo-/piezocatalytic N2 fixation is verified.
  • loading
  • [1]
    G.N. Schrauzer, T.D. Guth, J. Am. Chem. Soc. 99 (1977) 7189-7193
    [2]
    H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 139 (2017) 10929-10936
    [3]
    P.X. Xing, P.F. Chen, Z.Q. Chen, X. Hu, H.J. Lin, Y. Wu, L.H. Zhao, Y.M. He, ACS Sustain. Chem. Eng. 6 (2018) 14866-14879
    [4]
    W.Q. Zhang, P.X. Xing, J.Y. Zhang, L. Chen, J.Y. Yang, X. Hu, L.H. Zhao, Y. Wu, Y.M. He, J. Colloid Interf. Sci. 590 (2021) 548-560
    [5]
    P.X. Xing, S.J. Wu, Y.J. Chen, P.F. Chen, X. Hu, H.J. Lin, L.H. Zhao, Y.M. He, ACS Sustain. Chem. Eng. 7 (2019) 12408-12418
    [6]
    X.X. Yao, W.J. Zhang, J.L. Huang, Z.W. Du, X.K. Hong, X.F. X.L. Chen, Hu, X.H. Wang, Appl. Catal. A: Gen. 601 (2020) 117647
    [7]
    G. Wu, L.H. Yu, Y.F. Liu, J.M. Zhao, Z. Han, G. Geng, Appl. Surf. Sci. 481 (2019) 649-660
    [8]
    H. Li, J. Shang, J.G. Shi, K. Zhao, L.Z. Zhang, Nanoscale 8 (2016) 1986-1993
    [9]
    L. Zeng, F. Zhe, Y. Wang, Q.L. Zhang, X.Y. Zhao, X. Hu, Y. Wu, Y.M. He, J. Colloid Interf. Sci. 539 (2019) 563-574
    [10]
    T. Hirakawa, P.V. Kamat, J. Am. Chem. Soc. 127 (2005) 3928-39334
    [11]
    P. Li, Z. Wei, T. Wu, Q. Peng, Y.D. Li, J. Am. Chem. Soc. 133 (2011) 5660-5663
    [12]
    X.X. Chang, T. Wang, P. Zhang, J.J. Zhang, A. Li, J. L. Gong, J. Am. Chem. Soc. 137 (2015) 8356-8359
    [13]
    J.W. Fu, Q. L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B-Environ. 243 (2019) 556-565
    [14]
    L.F. Gao, T. Wen, J.Y. Xu, X.P. Zhai, M. Zhao, G.W. Hu, P. Chen, Q. Wang, H.L. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 617-624
    [15]
    R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y.X. Weng, Z.S. Lin, W. F. Fu, C.M. Che, Adv. Mater. 30 (2018) 6
    [16]
    X. Xu, X. Ding, X.L. Yang, P. Wang,; S. Li, Z.X. Lu, H. Chen, J. Hazard. Mater. 364 (2019) 691-699
    [17]
    Y.C. Xu, H.Z. Li, B.J. Sun, P.Z. Qiao, L.P. Ren, G.H. Tian, B.J. Jiang, K. Pan, W. Zhou, Chem. Eng. J. 379 (2020) 10
    [18]
    S.C. Tu, Y.X. Guo, Y.H. Zhang, C. Hu, T.R. Zhang, T.O.Y. Ma, H.W. Huang, Adv. Funct. Mater. 2020 in press, https://doi.org/10.1002/adfm.202005158
    [19]
    H.L. You, Y. M. Jia, Z. Wu, X.L. Xu, W.Q. Qian, Y.T. Xia, M. Ismail, Electrochem. Commun. 79 (2017) 55-58
    [20]
    H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu, L.F. Fei, X.X. Chen, Y.M. Jia, Y.J. Wang, F. F. Wang, S. Ju, J.L. Qiao, C.H. Lam, H.T. Huang, Angew. Chem.-Int. Edit. 58 (2019) 11779-11784
    [21]
    D.Y. Hong, W.L. Zang, X. Guo, Y.M. Fu, H.X. He, J. Sun, L.L. Xing, B.D. Liu, X.Y. Xue, ACS Appl. Mater. Interfaces 8 (2016) 21302-21314
    [22]
    S.Y. Xu, L.M. Guo, Q.J. Sun, Z.L. Wang. Adv. Funct. Mater. 29 (2019) 8
    [23]
    J.P. Ma, J. Ren, Y.M. Jia, Z. Wu, L. Chen, N.O. Haugen, H.T. Huang, Y.S. Liu, Nano Energy 62 (2019) 376-383
    [24]
    L. Hao, H.W. Huang, Y.X. Guo, Y.H. Zhang, ACS Sustain. Chem. Eng. 6 (2018) 1848-1862
    [25]
    C. Hu, H.W. Huang, F. Chen, Y.H. Zhang, H. Yu, T. Y. Ma, Adv. Funct. Mater. 30 (2020) 1908168
    [26]
    A. Zhang, Z.Y. Liu, X.H. Geng, W.F. Song, J.S. Lu, B. Xie, S.M. Ke, L.L. Shu, Ceram. Int. 45 (2019) 22486-22492
    [27]
    S. Singh, R. Sharma, M. Khanuja, Korean J. Chem. Eng. 35 (2018) 1955-1968
    [28]
    S. Garg, M. Yadav, A. Chandra, K. Hernadi, J. Nanosci. Nanotechnol. 19 (2019) 280-294
    [29]
    H. Lei, H.H. Zhang, Y. Zou, X.P. Dong, Y.M. Jia, F.F. Wang, J. Alloy. Compd. 809 (2019) 8
    [30]
    M. Ismail, Z. Wu, L.H. Zhang, J.P. Ma, Y.M. Jia, Y.M. Hu, Y.J. Wang, Chemosphere 228 (2019) 212-218
    [31]
    D.K. Shao, L. Zhang, S.M. Sun, W.Z. Wang, ChemSusChem 11 (2018) 527-531
    [32]
    M. Cui, J. X. Yu, H.J. Lin, Y. Wu, L.H. Zhao, Y. He, Appl. Surf. Sci. 387 (2016) 912-920
    [33]
    Y.N. Chen, G.Q. Zhu, M. Hojamberdiev, J.Z. Gao, R.L. Zhu, C.H. Wang, X.M. Wei, P. Liu, J. Hazard. Mater. 344 (2018) 42-54
    [34]
    Y. Bai, L.Q. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, ACS Appl. Mater. Interfaces. 8 (2016) 27661-27668
    [35]
    C. Liu, X.J. Wang, Dalton Trans. 45 (2016) 7720-7727
    [36]
    A.A. Putri, S. Kato, N. Kishi, T. Soga, J. Electron. Mater. 49 (2020) 1827-1834
    [37]
    Q.Z. Wang, M.Ma, S.S. Zhang, K.K. Lu, L.J. Fu, X.J. Liu, Y.H. Chen, ChemPlusChem 85 (2020) 672-678
    [38]
    T.T. Zhang, W.Y. Lei, P. Liu, J.A. Rodriguez, J.G. Yu, Y. Qi, G. Liu, M.H. Liu, J. Phys. Chem. C 120 (2016) 2777-2786
    [39]
    G. Corro, E. Vidal, S. Cebada, U. Pal, F. Banuelos, D. Vargas, E. Guilleminot, Appl. Catal. B-Environ. 216 (2017) 1-10
    [40]
    K. Li, M.X. Ji, R. Chen, Q. Jiang, J.X. Xia, H.M. Li, Chin. J. Catal. 41 (2020) 1230-1239
    [41]
    S.Yin, R. Chen, M.X. Ji, Q. Jiang, K. Li, Z.G. Chen, J.X. Xia, H.M. Li, J. Colloid Interf. Sci. 560 (2020) 475-484
    [42]
    R. Rameshbabu, G. Pecchi, E.J. Delgado, R.V. Mangalaraja, M. Sathish, J. Phys. Chem. C 124 (2020) 20898-20910
    [43]
    K.K. Paul, P. K. Giri, H. Sugimoto, M. Fujii, B. Choudhury, Sol. Energy Mater. Sol. Cells 201 (2019) 110053
    [44]
    Z.G. Chen, J. Zeng, J. Di, D.X. Zhao, M.X. Ji, J.X. Xia, H.M. Li, Green Energy Environ. 2 (2017) 124-133
    [45]
    X.W. Li, B. Wang, Y.H. Huang, J. Di, J.X. Xia, W.S. Zhu, H.M. Li, Green Energy Environ. 4 (2019) 198-206
    [46]
    X. Zhang, W.W. Yang, M.Y. Gao, H. Liu, K.F. Li, Y.S. Yu, Green Energy Environ. 2020, in press, https://doi.org/10.1016/j.gee.2020.07.024
    [47]
    P.F. Chen, L. Chen, S.F. Ge, W.Q. Zhang, M.F. Wu, P.X. Xing, T.B. Rotamond, H.J. Lin, Y. Wu, Y.M. He, Int. J. Hydrog. Energy 45 (2020) 14354-14367
    [48]
    Q.L. Zhang, P.F. Chen, L. Chen, M.F. Wu, X.Q. Dai, P.X. Xing, H.J. Lin, L.H. Zhao, Y.M. He, J. Colloid Interf. Sci. 568 (2020) 117-129
    [49]
    H.G. Yu, L.L. Xu, P. Wang, X.F. Wang, J.G. Yu, Appl. Catal. B-Environ. 144 (2014) 75-82
    [50]
    Y.J. Chen, C.R.Zhao, S.N. Ma, P.X. Xing, X. Hu, Y. Wu, Y.M. He, Inorg. Chem. Front. 6 (2019) 3083-3092
    [51]
    Y.X. Zhao, R. Shi, X.A.N. Bian, C. Zhou, Y.F. Zhao, S. Zhang, F. Wu, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Sci. 6 (2019) 1802109
    [52]
    Y. Liao, J. Qian, G. Xie, Q. Han, W.Q. Dang, Y.S. Wang, L.L. Lv, S. Zhao, L. Luo, W. Zhang, H.Y. Jiang, J.W. Tang, Appl. Catal. B: Environ. 273 (2020) 119054
    [53]
    L.L. Zhang, L.X. Ding, G.F. Chen, X.F. Yang, H.H. Wang, Angew. Chem. Int. Ed. 58 (2019) 2612-2616
    [54]
    J. Cao, B.D. Luo, H.L. Lin, S.F. Chen, J. Mol. Catal. A-Chem. 344 (2011) 138-144
    [55]
    T.P.P. Thi, Z. Yan, G. Nick, K. Hamideh, H.D.N. Phuc, X.F. Zhou, Z. Dou, K.C. Zhou, D. Steve, B. Chris, iScience 23 (2020) 20
    [56]
    A. Khataee, A. Karimi, S. Arefi-Oskoui, R.D.C. Soltani, Y. Hanifehpour, B. Soltani, S.W. Joo, Ultrason. Sonochem. 22 (2015) 371-381
    [57]
    H.W. Huang, X. Han, X.W. Li, S.C. Wang, P.K. Chu, Y.H. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 482-492
    [58]
    Q.Q. Chen, C.R. Zhao, Y. Wang, Y.J. Chen, Y.Y. Ma, Z.Q. Chen, J.X. Yu, Y. Wu, Y.M. He, Sol. Energy 171 (2018) 426-434
    [59]
    Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Inorg. Chem. 46 (2007) 6980-6986
    [60]
    E.Z. Lin, J. Wu, N. Qin, B.W. Yuan, D.H. Bao, Catal. Sci. Technol. 8 (2018) 4788-4796
    [61]
    T.M. Chou, S.W. Chan, Y.J. Lin, P.K. Yang, C.C. Liu, Y.J. Lin, J.M. Wu, J.T. Lee, Z.H. Lin, Nano Energy 57 (2019) 14-21
    [62]
    L.J. Cheng, Y. Kang, Catal. Commun. 72 (2015) 16-19
    [63]
    B.R. Xu, Y.Q. Gao, Y.D. Li, S. Liu, D. Lv, S.J. Zhao, H. Gao, G.Q. Yang, N.Li, L. Ge, Appl. Surf. Sci. 507 (2020) 144806
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (293) PDF downloads(33) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return