Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Sijia Song, Zipeng Xing, Ke Wang, Huanan Zhao, Peng Chen, Zhenzi Li, Wei Zhou. 3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy&Environment, 2023, 8(1): 200-212. doi: 10.1016/j.gee.2021.03.013
Citation: Sijia Song, Zipeng Xing, Ke Wang, Huanan Zhao, Peng Chen, Zhenzi Li, Wei Zhou. 3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy&Environment, 2023, 8(1): 200-212. doi: 10.1016/j.gee.2021.03.013

3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance

doi: 10.1016/j.gee.2021.03.013
  • 3D flower-like hierarchical mesoporous Bi4O5I2/MoS2 Z-scheme layered heterojunction photocatalyst was fabricated by oil bath and hydrothermal methods. The heterojunction with narrow band gap of ~1.95 eV extended the photoresponse to near-infrared region, which showed obvious photothermal effect due to the introduction of MoS2 with broad spectrum response. MoS2 nanosheets were anchored onto the surface of flower-like hierarchical mesoporous Bi4O5I2 nanosheets, thereby forming efficient layered heterojunctions, the solar-driven photocatalytic efficiency in degradation of highly toxic dichlorophenol and reduction of hexavalent chromium was improved to 98.5% and 99.2%, which was ~4 and 7 times higher than that of the pristine Bi4O5I2, respectively. In addition, the photocatalytic hydrogen production rate reached 496.78 μmol h-1 g-1, which was ~6 times higher than that of the pristine Bi4O5I2. The excellent photocatalytic performance can be ascribed to the promoted photothermal effect, as well as, the formation of compact Z-scheme layered heterojunctions. The 3D flower-like hierarchical mesoporous structure provided adequate surface active-sites, which was conducive to the mass transfer. Moreover, the high stability of the prepared photocatalyst further promoted its potential practical application. This strategy also provides new insights for fabricating layered Z-scheme heterojunctions photocatalysts with highly photothermal-photocatalytic efficiency.

     

  • • A 3D flower-like mesoporous Bi4O5I2/MoS2 heterojunction is prepared. • It extends the photoresponse from visible light to NIR region. • The mesoporous Bi4O5I2 can provide good hosts to construct layered heterojunctions. • It shows excellent photothermal-photocatalytic performance. • It is due to the formation of Z-scheme layered heterojunctions and 3D flower-like hierarchical mesoporous structure.
  • loading
  • [1]
    Y. Zhang, F. Bao, M. Li, H. Xia, D. Huang, C. Chen, J. Zhao, Environ. Sci. Technol. 54 (2020) 14868-14876
    [2]
    K. Wang, Z. Xing, D. Meng, S. Zhang, Z. Li, K. Pan, W. Zhou, Appl. Catal., B. 281 (2021) 119482
    [3]
    A.P. Ledray, C.M. Krest, T.H. Yosca, K. Mittra, M.T. Green, J. Am. Chem. Soc. 142 (2020) 20419-20425
    [4]
    M. Guo, Z. Xing, T. Zhao, Z. Li, S. Yang, W. Zhou, Appl. Catal., B. 257 (2019) 117913
    [5]
    D. Gao, R. Yuan, J. Fan, X. Hong, H. Yu, J. Mater Sci Technol. 56 (2020) 122-132
    [6]
    J.-L. Shi, R. Chen, H. Hao, C. Wang, X. Lang, Angew. Chem., Int. Ed. 59 (2020) 9088-9093
    [7]
    H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Angew. Chem., Int. Ed. 57 (2018) 122-138
    [8]
    F.-L. Long, C.-G. Niu, N. Tang, H. Guo, Z.-W. Li, Y.-Y. Yang, L.-S. Lin, Chem. Eng. J. 404 (2021) 127084
    [9]
    J. Pang, Z. Di, J.-S. Qin, S. Yuan, C.T. Lollar, J. Li, P. Zhang, M. Wu, D. Yuan, M. Hong, H.-C. Zhou, J. Am. Chem. Soc. 142 (2020) 15020-15026
    [10]
    H.-X. Fang, H. Guo, C.-G. Niu, C. Liang, D.-W. Huang, N. Tang, H.-Y. Liu, Y.-Y. Yang, L. Li, Chem. Eng. J. 402 (2020) 126185
    [11]
    Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang, Q. Li, D. Xu, Appl. Catal., B. 282 (2021) 119570
    [12]
    H.-Y. Liu, C.-G. Niu, H. Guo, C. Liang, D.-W. Huang, L. Zhang, Y.-Y. Yang, L. Li, J. Colloid Interface Sci. 576 (2020) 264-279
    [13]
    Z. Chen, Y. Peng, J. Chen, C. Wang, H. Yin, H. Wang, C. You, J. Li, Environ. Sci. Technol. 54 (2020) 14465-14473
    [14]
    L. Xiang; C.-G. Niu; N. Tang; X.-X. Lv; H. Guo; Z.-W. Li; H.-Y. Liu; L.-S. Lin; Y.-Y. Yang; C. Liang, Chem. Eng. J. 408 (2021) 127281
    [15]
    A. Tolosana-Moranchel, C. Pecharroman, M. Faraldos, A. Bahamonde, Chem. Eng. J. 403 (2021) 126186
    [16]
    H. Guo; C.-G. Niu; C. Liang; H.-Y. Niu; Y.-Y. Yang; H.-Y. Liu; N. Tang; H.-X. Fang, Chem. Eng. J. 409 (2021) 128030
    [17]
    Y. Shiraishi, M. Hashimoto, K. Chishiro, K. Moriyama, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 142 (2020) 7574-7583
    [18]
    Y. Yang, H. Mao, J. Wang, Q. Zhang, L. Jin, C. Wang, Y. Zhang, N. Su, F. Meng, Y. Yang, R. Xia, R. Chen, H. Zhu, L. Gu, Z. Yin, C.-W. Nan, J. Zhang, Adv. Mater. 32 (2020) 2003033
    [19]
    M. Shi, G. Li, J. Li, X. Jin, X. Tao, B. Zeng, E.A. Pidko, R. Li, C. Li, Angew. Chem., Int. Ed. 132 (2020) 6652-6657
    [20]
    R. Zhang, Y. Liu, Z. Wang, P. Wang, Z. Zheng, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, B. Huang, Appl. Catal., B. 254 (2019) 463-470
    [21]
    P. Chen, H. Liu, Y. Sun, J. Li, W. Cui, L.a. Wang, W. Zhang, X. Yuan, Z. Wang, Y. Zhang, F. Dong, Appl. Catal., B. 264 (2020) 118545
    [22]
    R.L.Z. Hoye, L.C. Lee, R.C. Kurchin, T.N. Huq, K.H.L. Zhang, M. Sponseller, L. Nienhaus, R.E. Brandt, J. Jean, J.A. Polizzotti, A. Kursumovic, M.G. Bawendi, V. Bulovic, V. Stevanovic, T. Buonassisi, J.L. MacManus-Driscoll, Adv. Mater. 29 (2017) 1702176
    [23]
    X. Zhang, W. Yang, M. Gao, H. Liu, K. Li, Y. Yu, Green Energy Environ, (2020) https://doi.org/10.1016/j.gee.2020.07.024
    [24]
    D. Kato, K. Hongo, R. Maezono, M. Higashi, H. Kunioku, M. Yabuuchi, H. Suzuki, H. Okajima, C. Zhong, K. Nakano, R. Abe, H. Kageyama, J. Am. Chem. Soc. 139 (2017) 18725-18731
    [25]
    C. Gong, J. Chu, S. Qian, C. Yin, X. Hu, H. Wang, Y. Wang, X. Ding, S. Jiang, A. Li, Y. Gong, X. Wang, C. Li, T. Zhai, J. Xiong, Adv. Mater. 32 (2020) 1908242
    [26]
    L. Zhang, J. Sha, R. Chen, Q. Liu, J. Liu, J. Yu, H. Zhang, C. Lin, W. Zhou, J. Wang, Appl. Catal., B. 271 (2020) 118920
    [27]
    H. Cheng, J. Wu, F. Tian, Q. Liu, X. Qi, Q. Li, W. Pan, Z. Li, J. Wei, Chem. Eng. J. 360 (2019) 951-963
    [28]
    L. Xu, W.-q. Chen, S.-q. Ke, S.-m. Zhang, M. Zhu, Y. Zhang, W.-y. Shi, S. Horike, L. Tang, Chem. Eng. J. 382 (2020) 122810
    [29]
    J. Wang, C. Cao, Y. Wang, Y. Wang, B. Sun, L. Zhu, Chem. Eng. J. 391 (2020) 123530
    [30]
    C.-S. Cao, J. Wang, X. Yu, Y. Zhang, L. Zhu, Appl. Catal., B. 277 (2020) 119222
    [31]
    Z. Zhang, Z. Pan, Y. Guo, P.K. Wong, X. Zhou, R. Bai, Appl. Catal., B. 261 (2020) 118212
    [32]
    M. Ji, Y. Liu, J. Di, R. Chen, Z. Chen, J. Xia, H. Li, Appl. Catal., B. 237 (2018) 1033-1043
    [33]
    M. Ji, J. Xia, J. Di, Y. Liu, R. Chen, Z. Chen, S. Yin, H. Li, Chem. Eng. J. 331 (2018) 355-363
    [34]
    M. Ji, J. Di, Y. Liu, R. Chen, K. Li, Z. Chen, J. Xia, H. Li, Appl. Catal., B. 268 (2020) 118403
    [35]
    Y. Xiao, T. Zhang, M. Zhou, Z. Weng, X. Chang, K. Yang, J. Liu, J. Li, B. Wei, Z. Wang, L. Fu, Adv. Mater. 31 (2019) 1970022
    [36]
    G. Tang, P. You, Q. Tai, A. Yang, J. Cao, F. Zheng, Z. Zhou, J. Zhao, P.K.L. Chan, F. Yan, Adv. Mater. 31 (2019) 1807689
    [37]
    H. Taheri, M.A. Unal, M. Sevim, C. Gurcan, O. Ekim, A. Ceylan, Z. Syrgiannis, K.C. Christoforidis, S. Bosi, O. Ozgenc, M.J. Gomez, M. Turktas Erken, C. Soydal, Z. Eroglu, C.V. Bitirim, U. Cagin, F. Ari, A. Ozen, O. Kucuk, L.G. Delogu, M. Prato, O. Metin, A. Yilmazer, Small, 16 (2020) 1904619
    [38]
    J. Liu, C. Dong, Y. Deng, J. Ji, S. Bao, C. Chen, B. Shen, J. Zhang, M. Xing, Water. Res. 145 (2018) 312-320
    [39]
    B. Lin, Z. Chen, P. Song, H. Liu, L. Kang, J. Di, X. Luo, L. Chen, C. Xue, B. Ma, G. Yang, J. Tang, J. Zhou, Z. Liu, F. Liu, Small, 16 (2020) 2003302
    [40]
    P. Lin, J. Shen, C. Prasad, H. Tang, Q. Liu, M. Zhang, Ceram. Int. 45 (2019) 21120-21126
    [41]
    Y. Wang, F. Lu, K. Su, N. Zhang, Y. Zhang, M. Wang, X. Wang, Chem. Eng. J. 399 (2020) 126018
    [42]
    J. Zhou, J. Lin, H. Sims, C. Jiang, C. Cong, J.A. Brehm, Z. Zhang, L. Niu, Y. Chen, Y. Zhou, Y. Wang, F. Liu, C. Zhu, T. Yu, K. Suenaga, R. Mishra, S.T. Pantelides, Z.-G. Zhu, W. Gao, Z. Liu, W. Zhou, Adv. Mater. 32 (2020) 1906536
    [43]
    Y. Zhang; Y. Bu; L. Wang; J.-P. Ao, Green Energy Environ, (2020) https://doi.org/10.1016/j.gee.2020.11.007
    [44]
    H. Dong, X. Zhang, Y. Zuo, N. Song, X. Xin, B. Zheng, J. Sun, G. Chen, C. Li, Appl. Catal. A-Gen. 590 (2020) 117367
    [45]
    M. Guo, Z. Xing, T. Zhao, Y. Qiu, B. Tao, Z. Li, W. Zhou, Appl. Catal., B. 272 (2020) 118978
    [46]
    X. Jin, C. Lv, X. Zhou, C. Zhang, Q. Meng, Y. Liu, G. Chen, Appl. Catal., B. 226 (2018) 53-60
    [47]
    L. Wang, M. Liu, W. Zha Y. Wei, X. Ma, C. Xu, C. Lu, N. Qin, L. Gao, W. Qiu, R. Sa, X. Fu R. Yuan, J. Catal. 389 (2020) 533-543
    [48]
    S. Su, Z. Xing, S. Zhang, M. Du, Y. Wang, Z. Li, P. Chen, Q. Zhu, W. Zhou, Appl. Surf. Sci. 537 (2021) 147890
    [49]
    Y. Yang, H. Yin, H. Li, Q. Zou, Z. Zhang, W. Pei, L. Luo, Y. Huo, H. Li, ACS Appl. Bio Mater. 1 (2018) 2141-2152
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (196) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return