Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Chunxiao Dong, Li Yang, Cheng Lian, Xiaoling Yang, Yihua Zhu, Hongliang Jiang, Chunzhong Li. Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis. Green Energy&Environment, 2023, 8(1): 224-232. doi: 10.1016/j.gee.2021.03.012
Citation: Chunxiao Dong, Li Yang, Cheng Lian, Xiaoling Yang, Yihua Zhu, Hongliang Jiang, Chunzhong Li. Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis. Green Energy&Environment, 2023, 8(1): 224-232. doi: 10.1016/j.gee.2021.03.012

Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis

doi: 10.1016/j.gee.2021.03.012
  • Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction (ORR) in metal-air batteries. Developing a facile strategy for the preparation of highly active nanocarbon electrocatalysts remains challenging. Herein, a low-cost and simple route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride. Molecular dynamics simulations reveal that the graphene formation is ascribed to two-dimensional layered feature of carbon nitride, and high compatibility of carbon nitride/glucose systems. Structural measurements suggest that the graphene possesses rich edge and topological defects. The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery. Combining experimental results and theoretical thermodynamic analysis, it is identified that graphitic nitrogen-modified topological defects at carbon framework edges are responsible for the decent ORR performance. The strategy presented in this work can be can be scaled up readily to fabricate defective carbon materials.

     

  • • Scalable route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride. • Molecular dynamics simulations are employed to reveal the formation process of defective graphene. • The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery. • Graphitic N-modified topological defects at carbon framework edges are proved to be responsible for the decent performance.
    Chunxiao Dong and Li Yang contributed equally to this work.
  • loading
  • [1]
    T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera. Chem. Rev. 110 (2010) 6474-6502
    [2]
    S. Chu, A. Majumdar. Nature. 488 (2012) 294-303
    [3]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo. Science. 355 (2017) eaad4998
    [4]
    S. Kartha, P. Grimes. Phys. Today. 47 (1994) 54-61
    [5]
    M.K. Debe. Nature. 486 (2012) 43-51
    [6]
    H.F. Wang, C. Tang, Q. Zhang. Adv. Funct. Mater. 28 (2018) 1803329
    [7]
    S. Ren, X. Duan, S. Liang, M. Zhang, H. Zheng. J. Mater. Chem. A. 8 (2020) 6144-6182
    [8]
    I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer. Angew. Chem., Int. Ed. 53 (2014) 102-121
    [9]
    A.A. Gewirth, J.A. Varnell, A.M. Diascro. Chem. Rev. 118 (2018) 2313-2339
    [10]
    Z. Li, W.H. Niu, Z.Z. Yang, N. Zaman, W. Samarakoon, M.Y. Wang, A. Kara, M. Lucero, M.V. Vyas, H. Chao, H. Zhou, G.E. Sterbinsky, Z.X. Feng, Y.G. Du, Y. Yang. Energ Environ Sci. 13 (2020) 884-895
    [11]
    D.Y. Chung, J.M. Yoo, Y.E. Sung. Adv. Mater. 30 (2018) 1704123
    [12]
    D. Yu, L.H. Zhou, J. Tang, J.X. Li, J. Hu, C.J. Peng, H.L. Liu. Ind. Eng. Chem. Res. 56 (2017) 8880-8887
    [13]
    A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov. Chem. Rev. 118 (2018) 2302-2312
    [14]
    H. Jiang, Q. He, Y. Zhang, L. Song. Acc. Chem. Res. 51 (2018) 2968-2977
    [15]
    J. Zhu, S. Mu. Adv. Funct. Mater. 30 (2020) 2001097
    [16]
    H. Yin, H. Xia, S. Zhao, K. Li, J. Zhang, S. Mu. Energy Environ. Mater. 4 (2020) 5-18
    [17]
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai. Science. 323 (2009) 760-764
    [18]
    X. Zheng, X. Cao, K. Zeng, Z. Sun, J. Yan, X. Li, C. Jin, X. Chen, R. Yang. J. Mater. Chem. A. 8 (2020) 11202-11209
    [19]
    W. Xuan, Z. Diao, Z. Ming, C. Hongzhong, F. Xun, G. Bin, G. Long, G. Yi, Q. Jianbin, W. Jing, Z. Yanli, Z. Guangcheng. Angew. Chem., Int. Ed. 59 (2020) 14639-14646
    [20]
    J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma. Adv. Mater. 32 (2020) e2003134
    [21]
    Y. Zhu, P. Tian, H. Jiang, J. Mu, L. Meng, X. Su, Y. Wang, Y. Lin, Y. Zhu, L. Song, C. Li. CCS Chem. (2020) 2539-2547
    [22]
    Y. Zhu, Z. Zhang, Z. Lei, Y. Tan, W. Wu, S. Mu, N. Cheng. Carbon. 167 (2020) 188-195
    [23]
    L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai. Chem. Commun. 52 (2016) 2764-2767
    [24]
    L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang, H. Duan, L. Dai, J. Shui. Nat. Commun. 9 (2018) 3819
    [25]
    Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao. Adv. Mater. 28 (2016) 9532-9538
    [26]
    C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou, B. Zhang, Q. Zhang, M.M. Titirici, F. Wei. Adv. Mater. 28 (2016) 6845-6851
    [27]
    D.H. Li, Y. Jia, G.J. Chang, J. Chen, H.W. Liu, J.C. Wang, Y.F. Hu, Y.Z. Xia, D.J. Yang, X.D. Yao. Chem. 4 (2018) 2345-2356
    [28]
    J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I.S. Amiinu, S. Mu. Angew. Chem., Int. Ed. 58 (2019) 3859-3864
    [29]
    A. Shen, Y. Zou, Q. Wang, R.A. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang. Angew. Chem., Int. Ed. 53 (2014) 10804-10808
    [30]
    X. Wang, Y. Jia, X. Mao, L. Zhang, D. Liu, L. Song, X. Yan, J. Chen, D. Yang, J. Zhou, K. Wang, A. Du, X. Yao. Chem. 6 (2020) 2009-2023
    [31]
    W.-Z. Cheng, J.-L. Liang, H.-B. Yin, Y.-J. Wang, W.-F. Yan, J.-N. Zhang. Rare Met. 39 (2020) 815-823
    [32]
    M. Dong, X. Liu, L. Jiang, Z. Zhu, Y. Shu, S. Chen, Y. Dou, P. Liu, H. Yin, H. Zhao. Green Energy Environ. 5 (2020) 499-505
    [33]
    Z. Li, Y. Huang, X. Chi, D. Li, L. Zhong, X. Li, C. Liu, X. Peng. Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2021.1001.1004
    [34]
    S.B. Yang, L.J. Zhi, K. Tang, X.L. Feng, J. Maier, K. Mullen. Adv. Funct. Mater. 22 (2012) 3634-3640
    [35]
    R. Wu, X. Wan, J. Deng, X. Huang, S. Chen, W. Ding, L. Li, Q. Liao, Z. Wei. Chem. Commun. 55 (2019) 9023-9026
    [36]
    Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing, M. Dong, Y.R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng, H. Zhao. Adv. Mater. (2020) 2004670
    [37]
    F. Zheng, Y. Liu, C.L. Zhang, J. Wang, N. Dong, P.D. Han, Y.X. Wu, Y.C. Wu. Rare Met. (2020) https://doi.org/10.1007/s12598-12020-01610-12592
    [38]
    H. Zhang, Y. Liu, H. Jiang, Z. Deng, H. Liu, C. Li. Chem. Eng. Sci. 207 (2019) 611-618
    [39]
    C. Liu, J. Wang, J.S. Li, J.Z. Liu, C.H. Wang, X.Y. Sun, J.Y. Shen, W.Q. Han, L.J. Wang. J. Mater. Chem. A. 5 (2017) 1211-1220
    [40]
    Y. Zhao, Q. Lai, J. Zhu, J. Zhong, Z. Tang, Y. Luo, Y. Liang. Small. 14 (2018) 1704207
    [41]
    Z. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu, C. Li. Adv. Mater. 29 (2017) 1603020
    [42]
    H.M. Liu, W.H. Zeng, Y. Yang, J.X. Chen, Y.W. Zhao, S.C. Mu. J. Mater. Chem. A. 9 (2021) 1260-1268
    [43]
    C.J. Li, Y. Xu, Y.H. Li, H.J. Yu, S.L. Yin, H.R. Xue, X.N. Li, H.J. Wang, L. Wang. Green Energy Environ. 3 (2018) 352-359
    [44]
    M.J. Wang, T. Zhao, W. Luo, Z.X. Mao, S. Chen, W. Ding, Y. Deng, W. Li, J. Li, Z. Wei. AIChE J. 64 (2018) 2881-2889
    [45]
    G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong, G. Wang, P. Zhang, M. Yu, E. Zschech, M. Chen, J. Zhang, X. Feng. Energ Environ Sci. 13 (2020) 2849-2855
    [46]
    A.C. Ferrari, J. Robertson. Phys. Rev. B. 61 (2000) 14095-14107
    [47]
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito. Phys. Chem. Chem. Phys. 9 (2007) 1276-1291
    [48]
    A.C. Ferrari, D.M. Basko. Nat. Nanotechnol. 8 (2013) 235-246
    [49]
    G. Zhang, L. Li, M. Chen, F. Yang. J. Mater. Chem. A. 8 (2020) 9256-9267
    [50]
    R. Pang, P. Tian, H. Jiang, M. Zhu, X. Su, Y. Wang, X. Yang, Y. Zhu, L. Song, C. Li. Natl. Sci. Rev. nwaa187 (2020) https://doi.org/10.1093/nsr/nwaa1187
    [51]
    F.L. Coffman, R. Cao, P.A. Pianetta, S. Kapoor, M. Kelly, L.J. Terminello. Appl. Phys. Lett. 69 (1996) 568-570
    [52]
    W. Wang, L. Shang, G. Chang, C. Yan, R. Shi, Y. Zhao, G.I.N. Waterhouse, D. Yang, T. Zhang. Adv. Mater. 31 (2019) 1808276
    [53]
    U. Dettlaff-Weglikowska, V. Skakalova, R. Graupner, S.H. Jhang, B.H. Kim, H.J. Lee, L. Ley, Y.W. Park, S. Berber, D. Tomanek, S. Roth. J. Am. Chem. Soc. 127 (2005) 5125-5131
    [54]
    Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao. Nat. Commun. 5 (2014) 3783
    [55]
    H.L. Jiang, Y.X. Lin, B.X. Chen, Y.K. Zhang, H.J. Liu, X.Z. Duan, D. Chen, L. Song. Mater Today. 21 (2018) 602-610
    [56]
    A. Milev, N. Tran, K. Kannangara, M. Wilson. Sci. Technol. Adv. Mater. 7 (2016) 834-838
    [57]
    C. Weiren, L. Xue Feng, L. Deyan, L. Xiong Wen David. Angew. Chem., Int. Ed. 59 (2020) 18234-18239
    [58]
    H. Jiang, Q. He, X. Li, X. Su, Y. Zhang, S. Chen, S. Zhang, G. Zhang, J. Jiang, Y. Luo, P.M. Ajayan, L. Song. Adv. Mater. 31 (2019) e1805127
    [59]
    L. Osmieri, A.H.A. Monteverde Videla, S. Specchia. Int. J. Hydrogen Energy. 41 (2016) 19610-19628
    [60]
    Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, B.Y. Xia. Adv. Funct. Mater. 30 (2019) 1906081
    [61]
    Q. Liu, X. Liu, Y. Xie, F. Sun, Z. Liang, L. Wang, H. Fu. J. Mater. Chem. A. 8 (2020) 21189-21198
    [62]
    Z.R. Xiao, F. Hou, Y.T. Li, R.R. Zhang, G.Q. Shen, L. Wang, X.W. Zhang, Q.F. Wang, G.Z. Li. Chem. Eng. Sci. 207 (2019) 235-246
    [63]
    J.K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson. J. Phys. Chem. B. 108 (2004) 17886-17892
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (236) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return