Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Kelei Huang, Chunhu Li, Xiuli Zhang, Liang Wang, Wentai Wang, Xiangchao Meng. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy&Environment, 2023, 8(1): 233-245. doi: 10.1016/j.gee.2021.03.011
Citation: Kelei Huang, Chunhu Li, Xiuli Zhang, Liang Wang, Wentai Wang, Xiangchao Meng. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy&Environment, 2023, 8(1): 233-245. doi: 10.1016/j.gee.2021.03.011

Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution

doi: 10.1016/j.gee.2021.03.011
  • Establishing highly effective charge transfer channels in carbon nitride (g-C3N4) to enhance its photocatalytic activity is still a challenging issue. Herein, the delaminated 2D Ti3C2 MXene nanosheets were employed to decorate the P-doped tubular g-C3N4 (PTCN) for engineering 1D/2D Schottky heterojunction (PTCN/TC) through electrostatic self-assembly. The optimized PTCN/TC exhibited the highest hydrogen evolution rate (565 μmol h-1 g-1), which was 4.3 and 2.0 -fold higher than pristine bulk g-C3N4 and PTCN, respectively. Such enhancement may be primarily attributed to the phosphorus heteroatom doped and unique structure of 1D/2D g-C3N4/Ti3C2 Schottky heterojunction, enhancing the light-harvesting and charges’ separation. One-dimensional pathway of g-C3N4 tube and built-in electric field of interfacial Schottky effect can significantly facilitate the spatial separation of photogenerated charge carriers, and simultaneously inhibit their recombination via Schottky barrier. In this composite, metallic Ti3C2 was served as electrons sink and photons collector. Moreover, ultrathin Ti3C2 flake with exposed terminal metal sites as a co-catalyst exhibited higher photocatalytic reactivity in H2 evolution compared to carbon materials (such as reduced graphene oxide). This work not only proposed the mechanism of tubular g-C3N4/Ti3C2 Schottky junction in photocatalysis, but also provided a feasible way to load ultrathin Ti3C2 as a co-catalyst for designing highly efficient photocatalysts.

     

  • • 1D/2D P-doped tubular g-C3N4/Ti3C2 nanosheets Schottky junction was fabricated. • P-doping and 1D tubular morphology enhanced light-harvesting ability of g-C3N4. • g-C3N4/Ti3C2 interfacial Schottky junction promoted spatial charges separation. • Ti3C2 acted as co-catalyst and electron sink to boost photocatalytic H2 evolution.
  • loading
  • [1]
    M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Adv. Sci. 4 (2017) 1600152
    [2]
    K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C 113 (2009) 4940-4947
    [3]
    W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 116 (2016) 7159-7329
    [4]
    K. Huang, C. Li, X. Zhang, X. Meng, L. Wang, W. Wang, Z. Li, Appl. Surf. Sci. 518 (2020) 146219
    [5]
    S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Catal. Today 335 (2019) 65-77
    [6]
    G. Gao, Y. Jiao, E.R. Waclawik, A. Du, J. Am. Chem. Soc. 138 (2016) 6292-6297
    [7]
    A. Nikokavoura, C. Trapalis, Appl. Surf. Sci. 430 (2018) 18-52
    [8]
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, J. Clean. Prod. 276 (2020) 124319
    [9]
    B. Chong, L. Chen, D. Han, L. Wang, L. Feng, Q. Li, C. Li, W. Wang, Chinese J. Catal. 40 (2019) 959-968
    [10]
    B.-X. Zhou, S.-S. Ding, B.-J. Zhang, L. Xu, R.-S. Chen, L. Luo, W.-Q. Huang, Z. Xie, A. Pan, G.-F. Huang, Appl. Catal. B-Environ. 254 (2019) 321-328
    [11]
    Z. Wang, Y. Huang, M. Chen, X. Shi, Y. Zhang, J. Cao, W. Ho, S.C. Lee, ACS Appl. Mater. Inter. 11 (2019) 10651-10662
    [12]
    S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Edit. 55 (2016) 1830-1834
    [13]
    C. Zhou, R. Shi, L. Shang, L.-Z. Wu, C.-H. Tung, T. Zhang, Nano Research 11 (2018) 3462-3468
    [14]
    X. Xiao, Y. Gao, L. Zhang, J. Zhang, Q. Zhang, Q. Li, H. Bao, J. Zhou, S. Miao, N. Chen, Adv. Mater. (2020) 2003082
    [15]
    W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, Appl. Catal. B-Environ. 273 (2020) 119051
    [16]
    W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Nano Energy 13 (2015) 757-770
    [17]
    X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu, W. Cui, Appl. Catal. B-Environ. 219 (2017) 53-62
    [18]
    R. Zhang, A. Zhang, Y. Yang, Y. Cao, F. Dong, Y. Zhou, J. Hazard. Mater. 397 (2020)
    [19]
    X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, J. Xie, Small 12 (2016) 6640-6696
    [20]
    M.E. Khan, M.M. Khan, M.H. Cho, Nanoscale 10 (2018) 9427-9440
    [21]
    K. Huang, C. Li, H. Li, G. Ren, L. Wang, W. Wang, X. Meng, ACS Appl. Nano Mater. 3 (2020) 9581-9603
    [22]
    P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44
    [23]
    R. Tang, S. Zhou, C. Li, R. Chen, L. Zhang, Z. Zhang, L. Yin, Adv. Funct. Mater. (2020) 2000637
    [24]
    T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu, S. Luo, Appl. Catal. B-Environ. 239 (2018) 545-554
    [25]
    Z. Li, H. Zhang, L. Wang, X. Meng, J. Shi, C. Qi, Z. Zhang, L. Feng, C. Li, J. Photoch. Photobio, A 386 (2020) 112099
    [26]
    Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang, D. He, Appl. Catal. B-Environ. 258 (2019) 117956
    [27]
    J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Nat. Commum. 8 (2017) 13907
    [28]
    G. Gao, A.P. O’mullane, A. Du, Acs Catal. 7 (2016) 494-500
    [29]
    X. Yang, N. Gao, S. Zhou, J. Zhao, Phys. Chem. Chem. Phys. 20 (2018) 19390-19397
    [30]
    T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, Z. Wu, Nanoscale 11 (2019) 8138-8149
    [31]
    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6 (2012) 1322-1331
    [32]
    C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv, Appl. Catal. B-Environ. 268 (2020) 118738
    [33]
    C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, X. Yang, Appl. Catal. B-Environ. 256 (2019)
    [34]
    H. Yang, Y. Zhou, Y. Wang, S. Hu, B. Wang, Q. Liao, H. Li, J. Bao, G. Ge, S. Jia, J. Mater. Chem. A 6 (2018) 16485-16494
    [35]
    J. Li, L. Zhao, S. Wang, J. Li, G. Wang, J. Wang, Appl. Surf. Sci. 515 (2020) 145922
    [36]
    Q. Liang, C. Zhang, S. Xu, M. Zhou, Y. Zhou, Z. Li, J. Colloid Interf. Sci. 577 (2020) 1-11
    [37]
    Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, J. Tian, ACS Appl. Mater. Inter. 11 (2019) 41440-41447
    [38]
    C. Zhou, D. Huang, P. Xu, G. Zeng, J. Huang, T. Shi, C. Lai, C. Zhang, M. Cheng, Y. Lu, A. Duan, W. Xiong, M. Zhou, Chem. Eng. J. 370 (2019) 1077-1086
    [39]
    R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Chem. Mater. 27 (2015) 5314-5323
    [40]
    G. Jia, Y. Wang, X. Cui, W. Zheng, Acs Sustain. Chem. Eng. 6 (2018) 13480-13486
    [41]
    J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, J. Catal. 361 (2018) 255-266
    [42]
    S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136
    [43]
    R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 11 (2017) 3752-3759
    [44]
    X. Tian, Y.-J. Sun, J.-Y. He, X.-J. Wang, J. Zhao, S.-Z. Qiao, F.-T. Li, J. Mater. Chem. A 7 (2019) 7628-7635
    [45]
    W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao, X. Fan, X. Guo, Acs Sustain. Chem. Eng. 6 (2018) 8976-8982
    [46]
    K. Chen, Z. Chai, C. Li, L. Shi, M. Liu, Q. Xie, Y. Zhang, D. Xu, A. Manivannan, Z. Liu, ACS Nano 10 (2016) 3665-3673
    [47]
    P. Chen, B. Lei, X.A. Dong, H. Wang, J. Sheng, W. Cui, J. Li, Y. Sun, Z. Wang, F. Dong, ACS Nano 14 (2020) 15841-15852
    [48]
    Y. Huang, D. Li, Z. Fang, R. Chen, B. Luo, W. Shi, Appl. Catal. B-Environ. 254 (2019) 128-134
    [49]
    Y.-P. Zhu, T.-Z. Ren, Z.-Y. Yuana, ACS Appl. Mater. Inter. 7 (2015) 16850-16856
    [50]
    M. Wu, J. Zhang, B.-B. He, H.-W. Wang, R. Wang, Y.-S. Gong, Appl. Catal. B-Environ. 241 (2019) 159-166
    [51]
    Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, Adv. Mater. 30 (2018) 1803220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (259) PDF downloads(36) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return