Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Risheng Bai, Yue Song, Ge Tian, Fei Wang, Avelino Corma, Jihong Yu. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy&Environment, 2023, 8(1): 163-172. doi: 10.1016/j.gee.2021.03.006
Citation: Risheng Bai, Yue Song, Ge Tian, Fei Wang, Avelino Corma, Jihong Yu. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy&Environment, 2023, 8(1): 163-172. doi: 10.1016/j.gee.2021.03.006

Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization

doi: 10.1016/j.gee.2021.03.006
  • The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions. Herein, we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1 ( MFI ) zeolites by replacing tetrabutyl orthotitanate (TBOT) with tetrabutyl orthotitanate tetramer (TBOT-tetramer) as the titanium source. The introduced TBOT-tetramer slowed down the zeolite crystallization process, and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species. Notably, the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40. The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area. It also impeded the formation of anatase species, resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT.

     

  • • Synthesis of Titanium-rich TS-1 zeolite. • The Ti-rich TS-1 zeolite exhibited abundant active hexa-coordinated titanium species and free of anatase. • The Ti-rich TS-1 zeolite catalyst demonstrated superior activity for oxidative desulfurization of dibenzothiophene.
  • loading
  • [1]
    J. Perez-Ramirez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Chem. Soc. Rev., 37 (2008) 2530-2542
    [2]
    F. Schuth, W. Schmidt, Adv. Eng. Mater., 14 (2002) 629-638
    [3]
    J.E. Schmidt, M.W. Deem, M.E. Davis, Angew. Chem. Int. Ed., 53 (2014) 8372-8374
    [4]
    M. Mazur, P.S. Wheatley, M. Navarro, W.J. Roth, M. Polozij, A. Mayoral, P. Eliasova, P. Nachtigall, J. Cejka, R.E. Morris, Nat. Chem., 8 (2016) 58-62
    [5]
    G. Feng, P. Cheng, W. Yan, M. Boronat, X. Li, J.-H. Su, J. Wang, Y. Li, A. Corma, R. Xu, J. Yu, Science, 351 (2016) 1188-1191
    [6]
    R. Bai, Y. Song, Y. Li, J. Yu, Trends in Chem., 1 (2019) 601-611
    [7]
    C.S. Cundy, P.A. Cox, Chem. Rev., 103 (2003) 663-702
    [8]
    J. Grand, S.N. Talapaneni, A. Vicente, C. Fernandez, E. Dib, H.A. Aleksandrov, G.N. Vayssilov, R. Retoux, P. Boullay, J.-P. Gilson, V. Valtchev, S. Mintova, Nat. Mater., 16 (2017) 1010-1015
    [9]
    F. Dubray, S. Moldovan, C. Kouvatas, J. Grand, C. Aquino, N. Barrier, J.-P. Gilson, N. Nesterenko, D. Minoux, S. Mintova, J. Am. Chem. Soc., 141 (2019) 8689-8693
    [10]
    R. Bai, Q. Sun, N. Wang, Y. Zou, G. Guo, S. Iborra, A. Corma, J. Yu, Chem. Mater., 28 (2016) 6455-6458
    [11]
    A. Corma, L.T. Nemeth, M. Renz, S. Valencia, Nature, 412 (2001) 423-425
    [12]
    A. Corma, M.E. Domine, L. Nemeth, S. Valencia, J. Am. Chem. Soc., 124 (2002) 3194-3195
    [13]
    C. Paris, M. Moliner, A. Corma, Green Chem., 15 (2013) 2101-2109
    [14]
    A. Corma, F.X. Llabres i Xamena, C. Prestipino, M. Renz, S. Valencia, J. Phys. Chem. C, 113 (2009) 11306-11315
    [15]
    M. Taramasso, G. Perego, B. Notari, US4410501A, 1983
    [16]
    N.A. Grosso-Giordano, A.S. Hoffman, A. Boubnov, D.W. Small, S.R. Bare, S.I. Zones, A. Katz, J. Am. Chem. Soc., 141 (2019) 7090-7106
    [17]
    R. Bai, Q. Sun, Y. Song, N. Wang, T. Zhang, F. Wang, Y. Zou, Z. Feng, S. Miao, J. Yu, J. Mater. Chem. A, 6 (2018) 8757-8762
    [18]
    J.A. Martens, P. Buskens, P.A. Jacobs, A. van der Pol, J.H.C. van Hooff, C. Ferrini, H.W. Kouwenhoven, P.J. Kooyman, H. van Bekkum, Appl. Catal. A-Gen., 99 (1993) 71-84
    [19]
    X. Zhang, Y. Wang, F. Xin, Appl. Catal. A-Gen., 307 (2006) 222-230
    [20]
    C.P. Gordon, H. Engler, A.S. Tragl, M. Plodinec, T. Lunkenbein, A. Berkessel, J.H. Teles, A.N. Parvulescu, C. Coperet, Nature, 586 (2020) 708-713
    [21]
    S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, A. Zecchina, R. Tagliapietra, C. Lamberti, Phys. Chem. Chem. Phys., 5 (2003) 4390-4393
    [22]
    C. Lamberti, S. Bordiga, A. Zecchina, G. Artioli, G. Marra, G. Spano, J. Am. Chem. Soc., 123 (2001) 2204-2212
    [23]
    W. Fan, R.-G. Duan, T. Yokoi, P. Wu, Y. Kubota, T. Tatsumi, J. Am. Chem. Soc., 130 (2008) 10150-10164
    [24]
    S. Bordiga, F. Bonino, A. Damin, C. Lamberti, Phys. Chem. Chem. Phys., 9 (2007) 4854-4878
    [25]
    T. Blasco, M.A. Camblor, A. Corma, J. Perez-Pariente, J. Am. Chem. Soc., 115 (1993) 11806-11813
    [26]
    J.M. Thomas, G. Sankar, Acc. Chem. Res., 34 (2001) 571-581
    [27]
    A. Thangaraj, S. Sivasanker, J. Chem. Soc., Chem. Commun., (1992) 123-124
    [28]
    T. Zhang, X. Chen, G. Chen, M. Chen, R. Bai, M. Jia, J. Yu, J. Mater. Chem. A, 6 (2018) 9473-9479
    [29]
    E. Jorda, A. Tuel, R. Teissier, J. Kervennal, Zeolites, 19 (1997) 238-245
    [30]
    S.-Y. Kim, H.-J. Ban, W.-S. Ahn, Catal. Lett., 113 (2007) 160-164
    [31]
    Q. Guo, K. Sun, Z. Feng, G. Li, M. Guo, F. Fan, C. Li, Chem.-Eur. J., 18 (2012) 13854-13860
    [32]
    Y. Zuo, M. Liu, T. Zhang, C. Meng, X. Guo, C. Song, ChemCatChem, 7 (2015) 2660-2668
    [33]
    K.S. Smirnov, B. van de Graaf, Microporous Mater., 7 (1996) 133-138
    [34]
    Q. Wang, L. Wang, Z. Mi, Catal. Lett., 103 (2005) 161-164
    [35]
    L. Wu, X. Deng, S. Zhao, H. Yin, Z. Zhuo, X. Fang, Y. Liu, M. He, Chem. Commun., 52 (2016) 8679-8682
    [36]
    J.M. Chezeau, L. Delmotte, J.L. Guth, Z. Gabelica, Zeolites, 11 (1991) 598-606
    [37]
    H. Li, Q. Lei, X. Zhang, J. Suo, ChemCatChem, 3 (2011) 143-145
    [38]
    T. Lu, J. Zou, Y. Zhan, X. Yang, Y. Wen, X. Wang, L. Zhou, J. Xu, ACS Catal., 8 (2018) 1287-1296
    [39]
    J. Datka, A.M. Turek, J.M. Jehng, I.E. Wachs, J. Catal., 135 (1992) 186-199
    [40]
    G. Lv, S. Deng, Z. Yi, X. Zhang, F. Wang, H. Li, Y. Zhu, Chem. Commun., 55 (2019) 4885-4888
    [41]
    A. Chica, A. Corma, M.E. Domine, J. Catal., 242 (2006) 299-308
    [42]
    P. Wu, L. Lu, J. He, L. Chen, Y. Chao, M. He, F. Zhu, X. Chu, H. Li, W. Zhu, Green Energy Environ., 5 (2020) 166-172
    [43]
    Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, L. Chen, Z. Chen, W. Zhu, Green Energy Environ., (2020), DOI: 10.1016/j.gee.2020.10.005
    [44]
    Q. Luo, Q. Zhou, Y. Lin, S. Wu, H. Liu, C. Du, Y. Zhong, C. Yang, Catal. Sci. Technol., 9 (2019) 6166-6179
    [45]
    L. Kang, H. Liu, H. He, C. Yang, Fuel, 234 (2018) 1229-1237
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return