Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Liteng Li, Xiaofang Li, Susu Zhang, Hongyuan Yan, Xiaoqiang Qiao, Hongyan He, Tao Zhu, Baokun Tang. Increasing the greenness of an organic acid through deep eutectic solvation and further polymerisation. Green Energy&Environment, 2022, 7(4): 840-853. doi: 10.1016/j.gee.2021.02.006
Citation: Liteng Li, Xiaofang Li, Susu Zhang, Hongyuan Yan, Xiaoqiang Qiao, Hongyan He, Tao Zhu, Baokun Tang. Increasing the greenness of an organic acid through deep eutectic solvation and further polymerisation. Green Energy&Environment, 2022, 7(4): 840-853. doi: 10.1016/j.gee.2021.02.006

Increasing the greenness of an organic acid through deep eutectic solvation and further polymerisation

doi: 10.1016/j.gee.2021.02.006
  • Acrylic acid (AA) is an important and widely used industrial chemical, but its high toxicity renders its use incompatible with the concept of green development. By leveraging its terminal carboxyl group and unsaturated bond, we designed and explored a new strategy to increase the greenness of AA via its eutectic melting using a quaternary ammonium salt (choline chloride) to form a deep eutectic solvent (DES), followed by polymerisation of the DES to form a polymer (poly(DES)). The greenness of AA, DES, and poly(DES) was evaluated via an in vitro test using MGC80-3 cells and an in vivo test using Kunming mice. The toxicity improved from Grade 2 (moderately toxic) for AA to Grade 1 (slightly toxic) for DESs and Grade 0 (non-toxic) for poly(DES) in the in vitro test. Moreover, the poly(DES)s showed a lower toxicity in mice than the DESs in the in vivo test. Thus, greenness enhancement was successfully achieved, with the greenness following the order AA < DES < poly(DES). Furthermore, the mechanisms underlying the change in toxicity were explored through microscopy and flow cytometry, which revealed that the DES can permeate the MGC80-3 cell membrane during the G0/G1 phase to adversely affect DNA synthesis in the S phase, but the poly(DES) cannot. Finally, the green poly(DES), which showed good adsorption properties and flexible functionality, was successfully applied as a carrier or excipient of drugs. Through the novel strategy reported herein, greenness enhancement and the broadening of the application scope of a toxic organic acid were achieved, making such acids applicable for green development.

     

  • • A new strategy to increase the greenness of a toxic organic acid. • Strategy combining of deep eutectic solvation and further polymerisation. • A greenness evaluation system first built. • A greenness order of AA < DES < Poly(DES). • DESs permeate the cell membrane and affect DNA synthesis.
  • loading
  • [1]
    A.M.T. Silva, R.R.N. Marques, R.M. Quinta-Ferreira, Appl. Cata. B-Environ. 47 (2004) 269-279
    [2]
    W.J. Sun, H.Z. Wei, L.Y. An, C.Y. Jin, H.L. Wu, Z.A. Xiong, C.Y. Pu, C.L. Sun, Appl. Cata. B-Environ. 245 (2019) 20-28
    [3]
    A.W. Dunn, S.M. Ehsan, D. Mast, P.G.M. Auletti, H. Xu, J.M. Zhang, R.C. Ewing, D.L. Shi, Mat. Sci. Eng. C-Mater. 46 (2015) 97-102
    [4]
    R. Sun, T.M. Ismail, X.H. Ren, M. Abd El-Salam, J. Environ. Manage. 157 (2015) 111-117
    [5]
    I. Borodina, K.R. Kildegaard, N.B. Jensen, T.H. Blicher, J. Maury, S. Sherstyk, K. Schneide, P. Lamosa, M.J. Herrgard, I. Rosenstand, Metab. Eng. 27 (2015) 57-64
    [6]
    A. Al-Atta, T. Huddle, Y.G. Rodriguez, F. Mato, J. Garcia-Serna, M.J. Cocero, R. Gomes, E. Lester, Chem. Eng. J. 344 (2018) 431-440
    [7]
    V.G. Gude, E. Martinez-Guerra, Environ. Chem. Lett. 16 (2018) 327-341
    [8]
    E. Antonio, O.D. Antunes, I.S. de Araujo, N.M. Khalil, R.M. Mainardes, Mat. Sci. Eng. C-Mater. 71 (2017) 156-166
    [9]
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 9 (2003) 70-71
    [10]
    Q. Zhang, K. D. O. Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 41 (2012) 7108-7146
    [11]
    M. Panic, V. Gunjevic, G. Cravotto, I.R. Redovnikovic, Food Chem. 300 (2019) 125185-125192
    [12]
    Y.Q. Xu, J.H. Wang, Z.K. Du, B. Li, A. Juhasz, M.Y. Tan, L.S. Zhu, J. Wang, Chemosphere. 240 (2020) 124919.1-124919.11
    [13]
    C.Y. Cai, F.F. Li, L.L. Liu, Z.J. Tan, Sep. Purif. Techol. 227 (2019) 115723-115730
    [14]
    W. Lindong, T. Mehmet, Phys. Chem. Chem. Phys. 20 (2018) 22455-22462
    [15]
    M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E.S. Mirghani, O.K. Saheed, Chemosphere. 90 (2013) 2193-2195
    [16]
    K. Aruchamy, N. Maalige, M.M. Halanur, A. Mahto, R. Nagaraj, D. Kalpana, D. Ghosh, D. Mondal, S.K. Nataraj, Chem. Eng. J. 379 (2020) 122327-122336
    [17]
    N.R. Rodriguez, A. Bruinhorst, J.B.M. Kollau, ACS Sustain. Chem. Eng. 7 (2019) 11521-11528
    [18]
    Z.W. Guo, Q.L. Zhang, T.T. You, Bioresource Technol. 293 (2019) 122036-122041
    [19]
    H.Y. Tian, J.Q. Wang, Y.J. Li, ACS Sustain. Chem. Eng. 7 (2019) 9976-9983
    [20]
    L. Bishop, L. Cena, M. Orandle, N. Yanamala, M.M. Dahm, M.E. Birch, D.E. Evans, V.K. Kodali, T. Eye, L. Battelli, ACS Nano. 11 (2017) 8849-8863
    [21]
    Y.L. Qiao, X.D. Yin, C.B. Tang, Sci. China-Chem. 58 (2015) 1641-1650
    [22]
    J.L. Shamshina, O. Zavgorodnya, J.R. Bonner, G. Gurau, T.D.Nardo, R.D. Rogers, ChemSusChem 10 (2016) 106-111
    [23]
    Z.J. Miao, Y. Wang, Z.M. Liu, J. Huang, B.X. Han, Z.Y. Sun, J.M. Du, J. Nanosci. Nanotechno. 6 (2006) 227-230
    [24]
    W. Qian, X. Tan, Q. Su, W.G. Cheng, F. Xu, L. Dong, S.J. Zhang, ChemSusChem 12 (2019) 1169-1178
    [25]
    D. Xu, J.N. Guo, F. Yan, Prog. Polym. Sci. 79 (2019) 121-143
    [26]
    L. Li, K. Liu, H. Xing, X. Li, Q. Zhang, D. Han, H. He, H. Yan, B. Tang, J. Catal. 374 (2019) 306-319
    [27]
    N. Fu, L. Li, X. Liu, N. Fu, C. Zhang, L. Hu, D. Li, B. Tang, T. Zhu, J. Chromatogr. A. 1530 (2017) 23-34
    [28]
    Z. Liu, Y. Wang, F. Xu, X. Wei, J. Chen, H. Li, X. He, Y. Zhou, Anal. Chim. Acta. 1129 (2010) 49-59
    [29]
    Z. Zhang, J. Song, B. Han, Chem. Rev. 117 (2017) 6834-6880
    [30]
    A. Dhakshinamoorthy, A.M. Asiri, M. Alvaro, Green Chem. 20 (2018) 86-107
    [31]
    K. Radosevic, J. Zeleznjak, M.C. Bubalo, I.R. Redovnikovic, I. Slivac, V.G. Srcek, Ecotox. Environ. Safe. 131 (2016) 30-36
    [32]
    L.Y. Zhu, S. Kalimuthu, J.M. Oh, P. Gangadaran, S.H. Baek, S.Y. Jeong, S.W. Lee, J. Lee, B.C. Ahn, Biomaterials. 190 (2019) 38-50
    [33]
    J. Ali, M. Tuzen, D. Citak, O.D. Uluozlu, D. Mendil, T.G. Kazi, H.I. Afridi, J. Mol. Liq. 291 (2019) 111299-111304
    [34]
    K. Zhang, S.H. Ren, Y.C. Hou, W.Z. Wu, J. Hazard. Mater. 324 (2017) 457-463
    [35]
    C.Y. Wu, C. Wang, T. Han, X.J. Zhou, S.W. Guo, J.Y. Zhan, Adv. Healthc. Mater. 2 (2013) 1613-1619
    [36]
    Y.A. Li, D.S. He, J.H. Tu, R. Wang, C. Zu, Y. Chen, W.Q. Yang, D. Shi, T.J. Webster, Y. Shen, Nanoscale. 10 (2018) 8628-8641
    [37]
    J.P. Luo, J.F. Sun, Y.J. Huang, J.H. Zhang, Y.D. Zhang, D.P. Zhao, M. Yan, Mat. Sci. Eng. C-Mater. 97 (2019) 275-284
    [38]
    C.Y. Zhang, Y.L. Cheng, X.W. Tong, H. Yu, H. Cheng, BioMed Res. Int. 7404038 (2019) 1-9
    [39]
    K. Radošević, N. Ćurko, V.G. Srček, M.C. Bubalo, M. Tomašević, K.K. Ganić, I.R. Redovniković, LWT 73 (2016) 45-51
    [40]
    M. Hayyan, M.A. Hashim, A. Hayyan, A. Mohammed, A. Saadi, M. Inas, E.S. Mohamed, C. Mirghani, K.S. Olorunnisola, Chemosphere. 90 (2013) 2193-2195
    [41]
    J.F. Borzelleca, Toxicol. Sci. 53 (2000) 2-4
    [42]
    K. Radosevic, M.C. Bubalo, V.G. Srcek, D. Grgas, T.L. Dragicevic, I.R. Redovnikovic, Ecotox. Environ. Safe. 112 (2015) 46-53
    [43]
    I. Juneidi, M. Hayyan, O.M. Ali, Environ. Sci. Pollut. R. 23 (2016) 7648-7659
    [44]
    S. Mainberger, M. Kindlein, F. Bezold, E. Elts, M. Minceva, H. Briesen, Mol. Phys. 115 (2017) 1309-1321
    [45]
    S.G. Wu, L.B. Zeng, C.Y. Wang, Y.R. Yang, W.L. Zhou, F.F. Li, Z.J. Tan, J. Hazard. Mater. 348 (2018) 1-9
    [46]
    B. McFarland, M. Sea, J. Polym. Environ. 26 (2018) 214-223
    [47]
    P.C. Gupta, N. Sharma, C.V. Rao, Res. J. Pharm. Biolog. Chem. Sci. 8 (2017) 72-77
    [48]
    P.Z. Jiang, Z.Z. Ni, B. Wang, B.C. Ma, H.K. Duan, X.D. Li, X.F. Ma, Q. Wei, X.Z. Ji, Q.Q. Liu, S.G. Xing, M.G. Li, Regul. Toxicol. Pharm. 85 (2017) 86-97
    [49]
    Y.P. Mbous, M. Hayyan, W.F. Wong, C.Y. Looi, M.A. Hashim, Sci. Rep. 7 (2017) 41257-41270
    [50]
    B.X. Ma, W.H. Zhuang, Y.A. Wang, R.F. Luo, Y.B. Wang, Acta Biomater. 70 (2018) 186-196
    [51]
    A.K. Jangir, B. Lad, U. Dani, N. Shah, K. Kuperkar, RSC Adv. 10 (2020) 24063-24072
    [52]
    A. Saraste, Herz. 24 (1999) 189-195
    [53]
    Y.H. Liu, Y.H. Liang, J. Jiang, Q. Qin, L.S. Wang, X. Liu, Bioorg. Med Chem Lett. 29 (2019) 1120-1126
    [54]
    T. Park, M. Koptyra, T. Curran, J. Biol. Chem. 291 (2016) 26273-26290
    [55]
    S. Vranic, A.F. Rodrigues, M. Buggio, L. Newman, M.R.H. White, D.G. Spiller, C. Bussy, K. Kostarelos, ACS Nano 12 (2018) 1373-1389
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return