Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Yuelong Xu, Ran Wang, Zhan Liu, Lili Gao, Tifeng Jiao, Zhenfa Liu. Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution. Green Energy&Environment, 2022, 7(4): 829-839. doi: 10.1016/j.gee.2020.12.008
Citation: Yuelong Xu, Ran Wang, Zhan Liu, Lili Gao, Tifeng Jiao, Zhenfa Liu. Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution. Green Energy&Environment, 2022, 7(4): 829-839. doi: 10.1016/j.gee.2020.12.008

Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution

doi: 10.1016/j.gee.2020.12.008
  • Electrochemical catalysts for the hydrogen evolution reaction (HER) have attracted increasing attentions. Noble metal-free cocatalysts play a vital role in HER applications. Herein, a novel strategy to prepare a Ni2P/MoS2 cocatalyst through a simple hydrothermal-phosphorization method was reported, and the prepared cocatalyst was then loaded on an N-doped carbon substrate with excellent conductive performance. The large surface area of the carbon substrate provided many active sites, and the interface between Ni2P and MoS2 improved the catalytic performance for the HER. Compared with pure Ni2P catalyst and MoS2 catalyst, the prepared Ni2P/MoS2 cocatalyst exhibited enhanced catalytic performance. In addition, the results indicate that the prepared cocatalyst has a wide pH range and low onset potential values of 280, 350 and 40 mV in acidic, phosphate-buffered saline and alkaline solutions, respectively, and the corresponding Tafel slopes are 75, 121 and 95 mV dec-1, respectively. Density functional theory (DFT) was adopted to calculate the hydrogen adsorption free energy (ΔGH*). The results showed that the interface between Ni2P and MoS2 reduced ΔGH*, which was beneficial to the adsorption of hydrogen. Present preparation of cocatalysts with unique interfaces provides a new strategy for improving the catalytic performance of HER.

     

  • Yuelong Xu and Ran Wang contributed equally to this work.
  • loading
  • [1]
    F. Xiao, W. Zhou, B.J. Sun, H.Z. Li, P.Z. Qiao, L.P. Ren, X.J. Zhao, H.G. Fu, Sci. China Mater. 61 (2018) 822-830
    [2]
    Z.X. Qin, M.L. Wang, R. Li, Y.B. Chen, Sci. China Mater. 61 (2018) 861-868
    [3]
    Y.H. Tang, P. Zhou, Y.G. Chao, F. Lin, J.P. Lai, H.X. Li; S.J. Guo, Sci. China Mater. 62 (2019) 351-358
    [4]
    F.F. Wang, Y.F. Zhu, W. Tian, X.B. Lv, H.L. Zhang, Z.F. Hu, Y.X. Zhang, J.Y. Ji, W. Jiang, J. Mater. Chem. A 6 (2018) 10490-10496
    [5]
    F. Yu, X. Xiong, L.Y. Zhou, J.L. Li, J.Y. Liang, S.Q. Hu, W.T. Lu, B. Li, H.C. Zhou, J. Mater. Chem. A 7 (2019) 2875-2883
    [6]
    X.J. Fan, Z.W. Peng, R.Q. Ye, H.Q. Zhou, X. Guo, ACS Nano 9 (2015) 7407-7418
    [7]
    X.X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180
    [8]
    Y. Zheng, Y. Jiao, Y.H. Zhu, L.H. Li, Y. Han, Y. Chen, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 138 (2016) 16174-16181
    [9]
    H.J. Yin, S.L. Zhao, K. Zhao, A. Muqsit, H.J. Tang, L. Chang, H.J. Zhao, Y. Gao, Z.Y. Tang, Nature Commun. 6 (2015) 6430
    [10]
    Y.L. Xu, R. Wang, Y.X. Zheng, L.H. Zhang, T.F. Jiao, Q.M. Peng, Z.F. Liu, Appl. Surf. Sci. 509 (2020) 145383
    [11]
    J.Q. Chi, W.K. Gao, J.H. Lin, B. Dong, J.F. Qin, Z.Z. Liu, B. Liu, Y.M. Chai, C.G. Liu, J. Catal. 360 (2018) 9-19
    [12]
    E.S. Guler, E. Konca, I. Karakaya, Int. J. Electrochem. Sci. 8 (2013) 5496-5505
    [13]
    D.Z. Wang, Y.Y. Xie, Z.Z. Wu, Nanotechnology 30 (2019) 20
    [14]
    R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Science 334 (2011) 1256-1260
    [15]
    D. Merki, X.L. Hu, Energy Environ. Sci. 4 (2011) 3878-3888
    [16]
    D.M. Hou, W.J. Zhou, X.J. Liu, K. Zhou, J. Xie, G.Q. Li, S.W. Chen, Electrochim. Acta 166 (2015) 26-31
    [17]
    J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, Angew. Chem. Int. Ed. 55 (2016) 2230-2234
    [18]
    L. Yu, B.Y. Xia, X. Wang, X.W. Lou, Adv. Mater. 28 (2016) 92-97
    [19]
    X.Q. Ji, B.P. Liu, X. Ren, X.F. Shi, A.M. Asiri, X.P. Sun, ACS Sustain. Chem. Eng. 6 (2018) 4499-4503
    [20]
    X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, J. Am. Chem. Soc. 137 (2015) 11900-11903
    [21]
    J. Ai, R.H. Jin, Z.P. Liu, J.W. Jiang, S.S. Yuan, G.Q. Huang, N. Li, X.T. Li, Int. J. Hydrogen Energ. 44 (2019) 5854-5862
    [22]
    Y. Cheng, Y. Pei, P.Y. Zhuang, H. Chu, Y.D. Cao, W. Smith, P. Dong, J.F. Shen, M.X. Ye, P.M. Ajayan, Small 15 (2019) 1904681
    [23]
    C.Y. Son, I.H. Kwak, Y.R. Lim, J. Park, Chem. Commun. 52 (2016) 2819-2822
    [24]
    V. Ganesan, J. Kim, S. Radhakrishnan, ChemElectroChem 5 (2018) 1644-1651
    [25]
    W. Zhou, M.M. Wu, G.R. Li, Chinese J. Catal. 41 (2020) 691-697
    [26]
    Y.J. Bai, H.J. Zhang, X. Li, L. Liu, H.T. Xu, H.J. Qiu, Y. Wang, Nanoscale 7 (2015) 1446-1453
    [27]
    P.L. Zhang, H. Chen, M. Wang, Y. Yang, J. Jiang, B.B. Zhang, L.L. Duan, Q.T. Daniel, F.S. Li, L.C. Sun, J. Mater. Chem. A 5 (2017) 7564-7570
    [28]
    D. Ma, K. Meng, J.Z. Ma, Z.J. Jia, Y. Wang, L.J. Liu, G.M. Zhu, T. Qi, Int. J. Hydrogen Energ. 44 (2019) 31960-31968
    [29]
    Q.L. Zhou, X.H. Luo, Y.L. Li, Y.X. Nan, H.Y. Deng, E.C. Ou, W.J. Xu, Int. J. Hydrogen Energ. 45 (2020) 433-442
    [30]
    R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky, M. Pumera, Chem. Commun. 53 (2017) 3054-3057
    [31]
    F. Yang, Z.F. Cao, J. Wang, S. Wang, H. Zhong, Int. J. Hydrogen Energ. 44 (2019) 21229-21237
    [32]
    Z.C. Xing, X.R. Yang, A.M. Asiri, X.P. Sun, ACS Appl. Mater. Inter. 8 (2016) 14521-14526
    [33]
    C. Wang, S. Wang, J. Lv, Y. Ma, G. Zhou, M. Chen, Y. Wang, M. Zhao, X. Chen, Int. J. Electrochem. Sci. 14 (2019) 11607-11615
    [34]
    Q. Wang, Z.L. Zhao, S. Dong, D.S. He, M.J. Lawrence, S.B. Han, C. Cai, S.H. Xiang, P. Rodriguez, B. Xiang, Z.G. Wang, Y.Y. Liang, M. Gu, Nano Energy 53 (2018) 458-467
    [35]
    C. Lin, Z.F. Gao, J. Jin, ChemSusChem 12 (2019) 457-466
    [36]
    G. Jeong, C.H. Kim, Y.G. Hur, G.H. Han, S.H. Lee, K.Y. Lee, Energ. Fuel 32 (2018) 9263-9270
    [37]
    Y.L. Xu, S.S. Wang, B. Ren, J.P. Zhao, L.H. Zhang, X.X. Dong, Z.F. Liu, J. Colloid Interf. Sci. 537 (2019) 486-495
    [38]
    G.W. Li, C.G. Fu, J.Q. Wu, J.C. Rao, S.C. Liou, X.J. Xu, B.Q. Shao, K. Liu, E. Liu, N. Kumar, X.J. Liu, M. Fahlman, J. Gooth, G. Auffermann, Y. Sun, C. Felser, B. Zhang, Appl. Catal. B Environ. 254 (2019) 1-6
    [39]
    D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci. 2 (2011) 1262-1267
    [40]
    Y.L. Xu, B. Ren, S.S. Wang, L.H. Zhang, Z.F. Liu, J. Colloid Interf. Sci. 527 (2018) 25-32
    [41]
    X.P. Gao, Y.A. Zhou, Y.J. Tan, B.W. Yang, Z.W. Cheng, Z.M. Shen, J.P. Jia, Appl. Surf. Sci. 473 (2019) 770-776
    [42]
    X.Y. Yu, H. Hu, Y.W. Wang, H.Y. Chen, X.W. Lou, Angew. Chem. Int. Ed. 54 (2015) 7395-7398
    [43]
    L.J. Yang, W.J. Zhou, J. Lu, D.M. Hou, Y.T. Ke, G.Q. Li, Z.H. Tang, X.W. Kang, S.W. Chen, Nano Energy 22 (2016) 490-498
    [44]
    T. Tian, L. Huang, L.H. Ai, J. Jiang, J. Mater. Chem. A 5 (2017) 20985-20992
    [45]
    L.X. Wang, Y. Li, M.R. Xia, Z.P. Li, Z.H. Chen, Z.P. Ma, X.J. Qin, G.J. Shao, J. Power Sources 347 (2017) 220-228
    [46]
    P.Y. Kuang, T. Tong, K. Fan, J.G. Yu, ACS Catal. 7 (2017) 6179-6187
    [47]
    Y. Wang, Z.G. Wang, Q. Yang, A. Hua, S. Ma, Z.D. Zhang, M.D. Dong, New J. Chem. 43 (2019) 6146-6152
    [48]
    F.J. Perez-Alonso, C. Adan, S. Rojas, M.A. Pena, J.L.G. Fierro Int. J. Hydrogen Energ. 40 (2015) 51-61
    [49]
    Y.H. Jin, C.C. Zhao, L. Wang, Q.L. Jiang, C.W. Ji, X.M. He, Int. J. Hydrogen Energ. 43 (2018) 3697-3704
    [50]
    C.Y. Gao, Z.Q. Li, H.Y. Wang, Y.Q. Yang, B.J. Li, Z.K. Peng, J. Li, Z.Y. Liu, ChemElectroChem 7 (2020) 355-361
    [51]
    S.Y. Huo, S.Q. Yang, Q.Q. Niu, F. Yang, L.Z. Song, Int. J. Hydrogen Energ. 45 (2020) 4015-4025
    [52]
    A. Oh, Y.J.Sa, H. Hwang, H. Baik, J. Kim, B. Kim, S.H. Joo, K. Lee, Nanoscale 8 (2016) 16379-16386
    [53]
    B. Seo, D.S. Baek, Y.J. Sa, S.H. Joo, CrystEngComm 18 (2016) 6083-6089
    [54]
    Y.R. Liu, W.H. Hu, X. Li, B. Dong, X. Shang, G.Q. Han, Y.M. Chai, Y.Q. Liu, C.G. Liu, Appl. Surf. Sci. 383 (2016) 276-282
    [55]
    Y.Y. Yang, X.Y. Liang, F. Li, S.W. Li, X.Z, Li, S.P. Ng, C.M.L. Wu, R. Li, ChemSusChem 11 (2018) 376-388
    [56]
    Y. Cui, C.W. Zhou, X.Z. Li, Y. Gao, J. Zhang, Electrochim. Acta 228 (2017) 428-435
    [57]
    H.S. Cao, Y. Xie, H.L. Wang, F. Xiao, A.P. Wu, L. Li, Z.K. Xu, N. Xiong, K. Pan, Electrochim. Acta 259 (2018) 830-840
    [58]
    C. Qian, R. Wang, M. Li, X. Li, B. Ge, Z. Bai, T. Jiao, Colloid Surf. A 608 (2021) 125616
    [59]
    J. Bai, R. Wang, M. Ju, J. Zhou, L. Zhang, T. Jiao, Sci. China Mater. (2020) DOI: 10.1007/s40843-020-1507-0
    [60]
    M. Cao, Y. Shen, Z. Yan, Q. Wei, T. Jiao, Y. Shen, Y. Han, Y. Wang, S. Wang, Y. Xia, T. Yue, Chem. Eng. J. 405 (2021) 126647
    [61]
    R. Su, H. Wang, Y. Sun, P. Guo, Colloid Surf. A 609 (2021) 125579
    [62]
    M. Wang, Z. Shang, X. Yan, G. Shi, H. Cao, W. Ma, T. Jiao, Opt. Commun. 481 (2021) 126522
    [63]
    H. Xu, D. Cheng, Green Energy Environ. 5 (2020) 286-302
    [64]
    H. Li, X. Han, S. Jiang, L. Zhang, W. Ma, R. Ma, Z. Zhou, Green Energy Environ. (2020) https://doi.org/10.1016/j.gee.2020.09.003
    [65]
    S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo, S. Angaiah, Green Energy Environ. 5 (2020) 259-273
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (400) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return